【題目】設(shè)直線l:y=k(x+1)(k≠0)與橢圓3x2+y2=a2(a>0)相交于A、B兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn). (Ⅰ)證明:a2> ;
(Ⅱ)若 ,求△OAB的面積取得最大值時(shí)的橢圓方程.
【答案】證明:(Ⅰ)由y=k(x+1)(k≠0)得 . 并代入橢圓方程3x2+y2=a2消去x得(3+k2)y2﹣6ky+3k2﹣k2a2=0 ①
∵直線l與橢圓相交于兩個(gè)不同的點(diǎn)得△=36k2﹣4(3+k2)(3k2﹣k2a2)>0,
∴ .
(Ⅱ)解:設(shè)A(x1 , y1),B(x2 , y2).
由①,得 ,②
∵ ,而點(diǎn)C(﹣1,0),
∴(﹣1﹣x1 , ﹣y1)=2(x2+1,y2),
得y1=﹣2y2代入②,得 ,③
∴△OAB的面積 = = ≤ = ,當(dāng)且僅當(dāng)k2=3,即 時(shí)取等號(hào).
把k的值代入③可得 ,
將 及 這兩組值分別代入①,均可解出a2=15.
∴△OAB的面積取得最大值的橢圓方程是3x2+y2=15
【解析】(1)把直線l的方程代入橢圓方程,由直線與橢圓相交于A、B兩個(gè)不同的點(diǎn)可得△>0,解出即可證明;(2)設(shè)A(x1 , y1),B(x2 , y2).利用根與系數(shù)的關(guān)系及向量相等得到y(tǒng)1 , y2的關(guān)系及可用k來(lái)表示,再利用三角形的面積公式∴△OAB的面積 及基本不等式的性質(zhì)即可得出取得面積最大值時(shí)的k的值,進(jìn)而得到a的值.
【考點(diǎn)精析】關(guān)于本題考查的橢圓的標(biāo)準(zhǔn)方程,需要了解橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)生物興趣小組在學(xué)校生物園地種植了一批名貴樹苗,為了了解樹苗生長(zhǎng)情況,從這批樹苗中隨機(jī)地測(cè)量了其中50棵樹苗的高度(單位:厘米).把這些高度列成了如下的頻率分布表:
(1)在這批樹苗中任取一棵,其高度不低于80厘米的概率大約是多少?
(2)這批樹苗的平均高度大約是多少?(用各組的中間值代替各組數(shù)據(jù)的平均值)
(3)為了進(jìn)一步獲得研究資料,若從組中移出一棵樹苗,從組中移出兩棵樹苗進(jìn)行試驗(yàn)研究,則組中的樹苗和組中的樹苗同時(shí)被移出的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華和小明兩個(gè)小伙伴在一起做游戲,他們通過(guò)劃拳(剪刀、石頭、布)比賽決勝誰(shuí)首先登上第3個(gè)臺(tái)階,他們規(guī)定從平地開始,每次劃拳贏的一方登上一級(jí)臺(tái)階,輸?shù)囊环皆夭粍?dòng),平局時(shí)兩個(gè)人都上一級(jí)臺(tái)階,如果一方連續(xù)兩次贏,那么他將額外獲得一次上一級(jí)臺(tái)階的獎(jiǎng)勵(lì),除非已經(jīng)登上第3個(gè)臺(tái)階,當(dāng)有任何一方登上第3個(gè)臺(tái)階時(shí),游戲結(jié)束,記此時(shí)兩個(gè)小伙伴劃拳的次數(shù)為.
(1)求游戲結(jié)束時(shí)小華在第2個(gè)臺(tái)階的概率;
(2)求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】f(x)是定義在R上的函數(shù),且對(duì)任意的x、y都有f(x+y)=f(x)+f(y)﹣1成立.當(dāng)x>0時(shí),f(x)>1.
(1)若f(4)=5,求f(2);
(2)證明:f(x)在R上是增函數(shù);
(3)若f(4)=5,解不等式f(3m2﹣m﹣2)<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校隨機(jī)抽取100名學(xué)生調(diào)查寒假期間學(xué)生平均每天的學(xué)習(xí)時(shí)間,被調(diào)查的學(xué)生每天用于學(xué)習(xí)的時(shí)間介于1小時(shí)和11小時(shí)之間,按學(xué)生的學(xué)習(xí)時(shí)間分成5組:第一組[1,3),第二組[3,5),第三組[5,7),第四組[7,9),第五組[9,11],繪制成如圖所示的頻率分布直方圖.
(Ⅰ)求學(xué)習(xí)時(shí)間在[7,9)的學(xué)生人數(shù);
(Ⅱ)現(xiàn)要從第三組、第四組中用分層抽樣的方法抽取6人,從這6人中隨機(jī)抽取2人交流學(xué)習(xí)心得,求這2人中至少有1人的學(xué)習(xí)時(shí)間在第四組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的是( )
A.
B.y=x2
C.y=﹣x|x|
D.y=x﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,則關(guān)于函數(shù)F(x)=f(f(x))的零點(diǎn)個(gè)數(shù),正確的結(jié)論是 . (寫出你認(rèn)為正確的所有結(jié)論的序號(hào))
①k=0時(shí),F(xiàn)(x)恰有一個(gè)零點(diǎn).②k<0時(shí),F(xiàn)(x)恰有2個(gè)零點(diǎn).
③k>0時(shí),F(xiàn)(x)恰有3個(gè)零點(diǎn).④k>0時(shí),F(xiàn)(x)恰有4個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著生活水平的提高,人們對(duì)空氣質(zhì)量的要求越來(lái)越高,某機(jī)構(gòu)為了解公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)抽查人,并將調(diào)查情況進(jìn)行整理后制成下表:
年齡(歲) | |||||
頻數(shù) | |||||
贊成人數(shù) |
(1)世界聯(lián)合國(guó)衛(wèi)生組織規(guī)定: 歲為青年, 為中年,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫以下列聯(lián)表:
青年人 | 中年人 | 合計(jì) | |
不贊成 | |||
贊成 | |||
合計(jì) |
(2)判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為贊成“車柄限行”與年齡有關(guān)?
附: ,其中
獨(dú)立檢驗(yàn)臨界值表:
(3)若從年齡的被調(diào)查中各隨機(jī)選取人進(jìn)行調(diào)查,設(shè)選中的兩人中持不贊成“車輛限行”態(tài)度的人員為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+)(A,ω,是常數(shù),A>0,ω>0)的部分圖象如圖所示,下列結(jié)論: ①最小正周期為π;
②將f(x)的圖象向左平移 個(gè)單位,所得到的函數(shù)是偶函數(shù);
③f(0)=1;
④ ;
⑤ .
其中正確的是( )
A.①②③
B.②③④
C.①④⑤
D.②③⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com