【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的是( )
A.
B.y=x2
C.y=﹣x|x|
D.y=x﹣2
【答案】D
【解析】解:函數(shù) 為非奇非偶函數(shù),不滿足條件;
函數(shù)y=x2為偶函數(shù),但在區(qū)間(0,+∞)上單調(diào)遞增,不滿足條件;
函數(shù)y=﹣x|x|為奇函數(shù),不滿足條件;
函數(shù)y=x﹣2為偶函數(shù),在區(qū)間(0,+∞)上單調(diào)遞減,滿足條件;
故選:D
【考點精析】本題主要考查了函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識點,需要掌握單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為[-1,5],部分對應值如下表, 的導函數(shù)的圖象如圖所示,下列關(guān)于的命題:
-1 | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
①函數(shù)的極大值點為0,4;
②函數(shù)在[0,2]上是減函數(shù);
③如果當時, 的最大值是2,那么t的最大值為4;
④當1<a<2時,函數(shù)有4個零點.
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|x2﹣2x﹣3|
(1)求f(x)的單調(diào)區(qū)間;
(2)若g(x)=f(x)﹣m有4個零點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設直線l:y=k(x+1)(k≠0)與橢圓3x2+y2=a2(a>0)相交于A、B兩個不同的點,與x軸相交于點C,記O為坐標原點. (Ⅰ)證明:a2> ;
(Ⅱ)若 ,求△OAB的面積取得最大值時的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足f(x)= ,且f(x)=f(x+2),g(x)= ,則方程g(x)=f(x)﹣g(x)在區(qū)間[﹣3,7]上的所有零點之和為( )
A.12
B.11
C.10
D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)的圖象與軸交于兩點, ,點在函數(shù)的圖象上,且為等腰直角三角形,記,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4x﹣a2x+1+a+1,a∈R.
(1)當a=1時,解方程f(x)﹣1=0;
(2)當0<x<1時,f(x)<0恒成立,求a的取值范圍;
(3)若函數(shù)f(x)有零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知非零向量 , 滿足| |=1,且( ﹣ )( + )= .
(1)求| |;
(2)當 =- 時,求向量 與 +2 的夾角θ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com