已知函數(shù)f(x)=-x3+x2-2x(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求實(shí)數(shù)a的取值范圍;
(3)若過(guò)點(diǎn)可作函數(shù)y=f(x)圖象的三條不同切線,求實(shí)數(shù)a的取值范圍.
(1) 增區(qū)間為(1,2),減區(qū)間為(-∞,1)和(2,+∞). (2) (-1,8); (3) (2,+∞).
解析試題分析:(1)當(dāng)a=3時(shí),f(x)=-x3+x2-2x,得f′(x)=-x2+3x-2.
因?yàn)閒′(x)=-x2+3x-2=-(x-1)(x-2),
所以當(dāng)1<x<2時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)x<1或x>2時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減.
故函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,2),單調(diào)遞減區(qū)間為(-∞,1)和(2,+∞).
(2)方法一:由f(x)=-x3+x2-2x,得f′(x)=-x2+ax-2.
因?yàn)閷?duì)于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,
即對(duì)于任意x∈[1,+∞)都有-x2+ax-2<2(a-1)成立,即對(duì)于任意x∈[1,+∞)都有x2-ax+2a>0成立.
令h(x)=x2-ax+2a,
要使h(x)對(duì)任意x∈[1,+∞)都有h(x)>0成立,必須滿足Δ<0,或
即a2-8a<0或所以實(shí)數(shù)a的取值范圍為(-1,8).
方法二:由f(x)=-x3+x2-2x,得f′(x)=-x2+ax-2.
因?yàn)閷?duì)于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,即對(duì)于任意x∈[1,+∞)都有f′(x)max<2(a-1).
因?yàn)閒′(x)=-2+-2,其圖象開(kāi)口向下,對(duì)稱軸為x=.
①當(dāng)<1,即a<2時(shí),f′(x)在[1,+∞)上單調(diào)遞減,所以f′(x)max=f′(1)=a-3.
由a-3<2(a-1),得a>-1,此時(shí)-1<a<2;
②當(dāng)≥1,即a≥2時(shí),f′(x)在上單調(diào)遞增,在上單調(diào)遞減,所以f′(x)max=f′=-2.由-2<2(a-1),得0<a<8,此時(shí)2≤a<8.
綜上①②可得,實(shí)數(shù)a的取值范圍為(-1,8).
(3)設(shè)點(diǎn)P是函數(shù)y=f(x)圖象上的切點(diǎn),則過(guò)點(diǎn)P的切線的斜率為k=f′(t)=-t2+at-2,所以過(guò)點(diǎn)P的切線方程為y+t3-t2+2t=(-t2+at-2)(x-t).
因?yàn)辄c(diǎn)在切線上,所以-+t3-t2+2t=(-t2+at-2)(0-t),即t3-at2+=0.
若過(guò)點(diǎn)可作函數(shù)y=f(x)圖象的三條不同切線,則方程t3-at2+=0有三個(gè)不同的實(shí)數(shù)解.
令g(t)=t3-at2+,則函數(shù)y=g(t)與t軸有三個(gè)不同的交點(diǎn).
令g′(t)=2t2-at=0,解得t=0或t=
因?yàn)間(0)=,g=-a3+,所以g=-a3+<0,即a>2.
所以實(shí)數(shù)a的取值范圍為(2,+∞).
考點(diǎn):導(dǎo)數(shù)的幾何意義;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;二次函數(shù)的性質(zhì);
點(diǎn)評(píng):我們要靈活應(yīng)用導(dǎo)數(shù)的幾何意義求曲線的切線方程,尤其要注意切點(diǎn)這個(gè)特殊點(diǎn),充分利用切點(diǎn)即在曲線方程上,又在切線方程上,切點(diǎn)處的導(dǎo)數(shù)等于切線的斜率這些條件列出方程組求解。做本題時(shí)我們要注意在某點(diǎn)處的切線方程和過(guò)某點(diǎn)的切線方程的區(qū)別。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<)圖像上一個(gè)最高點(diǎn)坐標(biāo)為(2,2),這個(gè)最高點(diǎn)到相鄰最低點(diǎn)的圖像與x軸交于點(diǎn)(5,0).
(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得將函數(shù)f(x)的圖像向右平移m個(gè)單位后得到一個(gè)偶函數(shù)的圖像?若存在,求m的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)直線為曲線的切線,且經(jīng)過(guò)原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)判斷奇偶性, 并求出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)
(1)當(dāng)x>0時(shí),求證:
(2)是否存在實(shí)數(shù)a使得在區(qū)間[1.2)上恒成立?若存在,求出a的取值條件;
(3)當(dāng)時(shí),求證:f(1)+f(2)+f(3)+…+.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為20,求它在該區(qū)間的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(I)若,判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(II)若函數(shù)在內(nèi)存在極值,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象經(jīng)過(guò)點(diǎn)M(1,4),曲線在點(diǎn)M處的切線恰好與直線垂直。
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),
(I)若,求函數(shù)的極小值,
(Ⅱ)若,設(shè),函數(shù).若存在使得成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com