【題目】已知函數(shù),

(1)分別求的值:

(2)討論的解的個數(shù):

(3)若對任意給定的,都存在唯一的,滿足,求實數(shù)

的取值范圍.

【答案】(1)-1,0.

(2) 解: 解: 解: 解.

(3) .

【解析】

(1)直接由分段函數(shù)求得,的值;(2)求出函數(shù)的解析式并作出圖象,數(shù)形結(jié)合可得的解的個數(shù);(3)由題意可得的取值必須大于1,然后根據(jù)的范圍分析關(guān)于的二次函數(shù)的值域,從而可得實數(shù)的取值范圍.

(1)∵,∴

,∴

(2),畫圖的圖象如圖,

由圖可知,當(dāng)時,方程0解;

當(dāng)時,方程2解;

當(dāng)時,方程4解;

當(dāng)時,方程3解.

(3)要使對任意給定的,都存在唯一的,滿足,則的取值必須大于1;即當(dāng)時,的值域包含于;

當(dāng)時,,舍去;當(dāng)時,

當(dāng)時,,舍去;綜上所述

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為元時,可全部租出.當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.若使租賃公司的月收益最大,每輛車的月租金應(yīng)該定為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體的棱長為分別是的中點,則過且與平行的平面截正方體所得截面的面積為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 平面, 為線段上一點, , 的中點.

(1)證明:

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(為參數(shù)),曲線C2的參數(shù)方程為(為參數(shù)).在以O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,射線lθα C1,C2 各有一個交點.當(dāng) α0時,這兩個交點間的距離為2,當(dāng) α時,這兩個交點重合.

(1) 求曲線C1C2的直角坐標(biāo)方程

(2) 設(shè)當(dāng) α時,lC1C2的交點分別為A1,B1,當(dāng) α=-時,lC1,C2的交點分別為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,,離心率為,直線

與橢圓的兩個交點間的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,過,作兩條平行線與橢圓的上半部分分別交于,兩點,求四邊形

面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在本市某舊小區(qū)改造工程中,需要在地下鋪設(shè)天燃?xì)夤艿?已知小區(qū)某處三幢房屋分別位于扇形的三個頂點上,點是弧的中點,現(xiàn)欲在線段上找一處開挖工作坑(不與點,重合),為鋪設(shè)三條地下天燃?xì)夤芫,,已知米,,記,該三條地下天燃?xì)夤芫的總長度為米.

(1)將表示成的函數(shù),并寫出的范圍;

(2)請確定工作坑的位置,使此處地下天燃?xì)夤芫的總長度最小,并求出總長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣畜牧技術(shù)員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進(jìn)行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量y(單位:萬只)與相成年份x(序號)的數(shù)據(jù)表和散點圖(如圖所示),根據(jù)散點圖,發(fā)現(xiàn)y與x有較強(qiáng)的線性相關(guān)關(guān)系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)z(單位:個)關(guān)于x的回歸方程.

(1)根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關(guān)于x的線性回歸方程(參考統(tǒng)計量:);

(2)試估計:①該縣第一年養(yǎng)殖山羊多少萬只?

②到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在固定壓力差(壓力差為常數(shù))下,當(dāng)氣體通過圓形管道時,其流量速率,(單位:)與管道半徑r(單位:cm)的四次方成正比.

1)寫出氣體流量速率,關(guān)于管道半徑r的函數(shù)解析式;

2)若氣體在半徑為3cm的管道中,流量速率為,求該氣體通過半徑為r的管道時,其流量速率v的表達(dá)式;

3)已知(2)中的氣體通過的管道半徑為5cm,計算該氣體的流量速率(精確到.

查看答案和解析>>

同步練習(xí)冊答案