【題目】已知函數(shù)fx)=|x|+|xλ|,其中λ

1)若對任意xR,恒有fx,求λ的最大值;

2)在(1)的條件下,設(shè)λ的最大值為t,若正數(shù)m,n滿足m+2nmnt,求2m+n的最小值.

【答案】(1)(2)36

【解析】

1)對任意xR,恒有fxfxmin,再用絕對值不等式的性質(zhì)求得fx)的最小值代入可求得λ的最大值;

2)由(1)知t,m+2nmn,∴,再變形后用基本不等式可求得.

1)∵fx)=|x|+|xλ|≥|x)﹣(xλ||λ|,∴fxmin|λ|,

對任意xR,恒有fx|λ|,解得λλ,

又已知λ,故λ,所以λ的最大值為

2)由(1)知t,m+2nmn,∴

2m+n=(2m+n×4)=44+1≥45+2)=36

當(dāng)且僅當(dāng)mn12時取等.

2m+n的最小值為36

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為參數(shù)).以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求圓的極坐標(biāo)方程;

2)直線的極坐標(biāo)方程是,射線與圓的交點為,與直線的交點為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關(guān),經(jīng)統(tǒng)計得到如下數(shù)據(jù):

1

2

3

4

5

6

7

8

112

61

44.5

35

30.5

28

25

24

根據(jù)以上數(shù)據(jù),繪制了散點圖.

觀察散點圖,兩個變量不具有線性相關(guān)關(guān)系,現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為,的相關(guān)系數(shù).

參考數(shù)據(jù)(其中):

183.4

0.34

0.115

1.53

360

22385.5

61.4

0.135

(1)用反比例函數(shù)模型求關(guān)于的回歸方程;

(2)用相關(guān)系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計產(chǎn)量為10千件時每件產(chǎn)品的非原料成本;

(3)該企業(yè)采取訂單生產(chǎn)模式(根據(jù)訂單數(shù)量進(jìn)行生產(chǎn),即產(chǎn)品全部售出).根據(jù)市場調(diào)研數(shù)據(jù),若該產(chǎn)品單價定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產(chǎn)品的原料成本為10元,根據(jù)(2)的結(jié)果,企業(yè)要想獲得更高利潤,產(chǎn)品單價應(yīng)選擇100元還是90元,請說明理由.

參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,,相關(guān)系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,已知側(cè)面,,,,點在棱上.

)求證:平面;

)試確定點的位置,使得二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB2,AD1.將矩形沿對角線BD折起,使A移到點P,P在平面BCD上的投影O恰好落在CD邊上.

1)證明:DP⊥平面BCP

2)求點O到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求的直角坐標(biāo)方程;

2)若有且僅有三個公共點,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x2xalnx

1)當(dāng)a3時,求fx)在[12]上的最大值與最小值;

2)若fx)在(0,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形為矩形, ,的中點,沿折起,得到四棱錐,設(shè)的中點為,在翻折過程中,得到如下有三個命題:

平面,且的長度為定值;

三棱錐的最大體積為;

③在翻折過程中,存在某個位置,使得.

其中正確命題的序號為__________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請解答以下問題,要求解決兩個問題的方法不同.

1)如圖1,要在一個半徑為1米的半圓形鐵板中截取一塊面積最大的矩形,如何截?并求出這個最大矩形的面積.

2)如圖2,要在一個長半軸為2米,短半軸為1米的半個橢圓鐵板中截取一塊面積最大的矩形,如何截。坎⑶蟪鲞@個最大矩形的面積.

查看答案和解析>>

同步練習(xí)冊答案