【題目】如圖,在三棱錐P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.
(1)求直線PC與平面ABC所成角的大。
(2)求二面角B﹣AP﹣C的大。
【答案】
(1)解:[解法一]
設(shè)AB中點(diǎn)為D,AD中點(diǎn)為O,連接OC,OP,CD.
因?yàn)锳B=BC=CA,所以CD⊥AB,
因?yàn)椤螦PB=90°,∠PAB=60°,所以△PAD為等邊三角形,所以PO⊥AD,又平面PAB⊥平面ABC,平面PAB∩平面ABC=AD.
PO⊥平面ABC,∠OCP為直線PC與平面ABC所成的角
不妨設(shè)PA=2,則OD=1,OP= ,AB=4.
所以CD=2 ,OC= = =
在RT△OCP中,tan∠OCP= = = .
故直線PC與平面ABC所成的角的大小為arctan .
[解法二]
設(shè)AB中點(diǎn)為D,連接CD.因?yàn)镺在AB上,且O為P在平面ABC內(nèi)的射影,
所以PO⊥平面ABC,所以PO⊥AB,且PO⊥CD.因?yàn)锳B=BC=CA,所以CD⊥AB,設(shè)E為AC中點(diǎn),則EO∥CD,從而OE⊥PO,OE⊥AB.
如圖,以O(shè)為坐標(biāo)原點(diǎn),OB,OE,OP所在直線分別為x,y,z軸建立空間直角坐標(biāo)系O﹣xyz.不妨設(shè)PA=2,由已知可得,AB=4,OA=OD=1,OP= ,
CD=2 ,所以O(shè)(0,0,0),A(﹣1,0,0),C(1,2 ,0),P(0,0, ),所以 =(﹣1,﹣2 , ) =(0,0, )為平面ABC的一個法向量.
設(shè)α為直線PC與平面ABC所成的角,則sinα= = = .故直線PC與平面ABC所成的角大小為arcsin
(2)解:[解法一]
過D作DE⊥AP于E,連接CE.
由已知,可得CD⊥平面PAB.根據(jù)三垂線定理知,CE⊥PA.所以∠CED為二面角
B﹣AP﹣C的平面角.由(1)知,DE= ,在RT△CDE中,tan∠CED= = =2,故二面角B﹣AP﹣C的大小為arctan2.
[解法二]
由(1)知, =(1,0, ), =(2,2 ,0).
設(shè)平面APC的一個法向量為 =(x,y,z),則由 得出 即 ,
取x=﹣ ,則y=1,z=1,所以 =(﹣ ,1,1).設(shè)二面角B﹣AP﹣C的平面角為β,易知β為銳角.
而面ABP的一個法向量為 =(0,1,0),則cosβ= = = .
故二面角B﹣AP﹣C的大小為arccos .
【解析】解法一(1)設(shè)AB中點(diǎn)為D,AD中點(diǎn)為O,連接OC,OP,CD.可以證出∠OCP為直線PC與平面ABC所成的角.不妨設(shè)PA=2,則OD=1,OP= ,AB=4.在RT△OCP中求解.(2)以O(shè)為原點(diǎn),建立空間直角坐標(biāo)系,利用平面APC的一個法向量與面ABP的一個法向量求解.解法二(1)設(shè)AB中點(diǎn)為D,連接CD.以O(shè)為坐標(biāo)原點(diǎn),OB,OE,OP所在直線分別為x,y,z軸建立空間直角坐標(biāo)系O﹣xyz.利用 與平面ABC的一個法向量夾角求解.(2)分別求出平面APC,平面ABP的一個法向量,利用兩法向量夾角求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓經(jīng)過點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的兩個點(diǎn),線段的中垂線的斜率為且直線與交于點(diǎn),為坐標(biāo)原點(diǎn),求證:三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓 的左焦點(diǎn)為F,直線x=m與橢圓相交于點(diǎn)A、B,當(dāng)△FAB的周長最大時,△FAB的面積是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=6cos2 sinωx﹣3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ ),求f(x0+1)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,3月至7月房價上漲過快,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求關(guān)于的回歸直線方程;
(2)若政府不調(diào)控,按照3月份至7月份房價的變化趨勢預(yù)測12月份該市新建住宅的銷售均價.
參考數(shù)據(jù):,,;
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)在上有最大值1,設(shè) .
(1)求的值;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)有三個不同的零點(diǎn),求實(shí)數(shù)的取值范圍(為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運(yùn)動”是由騰訊開發(fā)的一個類似計(jì)步數(shù)據(jù)庫的公眾賬號.用戶可以通過關(guān)注“微信運(yùn)動”公眾號查看自己及好友每日行走的步數(shù)、排行榜,也可以與其他用戶進(jìn)行運(yùn)動量的或點(diǎn)贊.現(xiàn)從某用戶的“微信運(yùn)動”朋友圈中隨機(jī)選取40人,記錄他們某一天的行走步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)/步 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | 10000以上 |
男性人數(shù)/人 | 1 | 6 | 9 | 5 | 4 |
女性人數(shù)/人 | 0 | 3 | 6 | 4 | 2 |
規(guī)定:用戶一天行走的步數(shù)超過8000步時為“運(yùn)動型”,否則為“懈怠型”.
(1)將這40人中“運(yùn)動型”用戶的頻率看作隨機(jī)抽取1人為“運(yùn)動型”用戶的概率.從該用戶的“微信運(yùn)動”朋友圈中隨機(jī)抽取4人,記為“運(yùn)動型”用戶的人數(shù),求和的數(shù)學(xué)期望;
(2)現(xiàn)從這40人中選定8人(男性5人,女性3人),其中男性中“運(yùn)動型”有3人,“懈怠型”有2人,女性中“運(yùn)動型”有2人,“懈怠型”有1人.從這8人中任意選取男性3人、女性2人,記選到“運(yùn)動型”的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力.某移動支付公司從我市移動支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計(jì) | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,由以上數(shù)據(jù)完成下列列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.005的前提下,認(rèn)為“移動支付活躍用戶”與性別有關(guān)?
移動支付活躍用戶 | 非移動支付活躍用戶 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) | 100 |
(Ⅱ)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達(dá)人”.為了做好調(diào)查工作,決定用分層抽樣的方法從“移動支付達(dá)人”中抽取6人進(jìn)行問卷調(diào)查,再從這6人中選派2人參加活動.求參加活動的2人性別相同的概率?
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com