計算下列定積分:
(1)
3
1
1
x
dx;
(2)
2
0
e
x
2
dx;
(3)
e+1
2
1
x-1
dx;
(4)
π
2
0
cos2x
cosx+sinx
dx.
考點:定積分
專題:計算題,導數(shù)的概念及應用
分析:(1)
3
1
1
x
dx=2
x
|
 
3
1
;(2)
2
0
e
x
2
dx=2e
x
2
|
2
0
;(3)
e+1
2
1
x-1
dx=ln(x-1)|
 
e+1
2
;(4)
π
2
0
cos2x
cosx+sinx
dx=
π
2
0
(cosx-sinx)dx=(sinx+cosx)|
 
π
2
0
解答: 解:(1)
3
1
1
x
dx=2
x
|
 
3
1
=2
3
-2;
(2)
2
0
e
x
2
dx=2e
x
2
|
2
0
=2e-2;
(3)
e+1
2
1
x-1
dx=ln(x-1)|
 
e+1
2
=lne-ln1=1;
(4)
π
2
0
cos2x
cosx+sinx
dx=
π
2
0
(cosx-sinx)dx=(sinx+cosx)|
 
π
2
0
=1-1=0.
點評:本題考查了定積分的運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求證:x
1
3
+y
1
3
=1為軸對稱圖形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四棱錐P-ABCD的棱長都相等,側棱PB、PD的中點分別為M、N,則截面AMN與底面ABCD所成的二面角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(x,y)是橢圓x2+
y2
4
=1上的一個動點,則x2+y2的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°側面PAD⊥底面ABCD.E、F分別為AD、PA中點.
(1)求證:PD∥平面CEF;
(2)求證:平面CEF⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱柱 ABC-A1B1C1′中,∠ABC=90°,AA1=AC=BC=2,A1在底面ABC內(nèi)的射影為AC的中點D.
(1)求證:BA1⊥AC1;
(2)求三棱錐 B1-A1DB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等級產(chǎn)品一等二等甲5(萬元)2.5(萬元)乙2.5(萬元)1.5(萬元)利潤項目產(chǎn)品工人(名)資金(萬元)甲88乙210用量工序產(chǎn)品第一工序第二工序甲0.80.85乙0.750.8概率某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都是經(jīng)過第一和第二工序加工而成,兩道工序的加工結果相互獨立,每道工序的加工結果均有A、B兩個等級.對每種產(chǎn)品,兩道工序的加工結果都為A級時,產(chǎn)品為一等品,其余均為二等品.
(1)已知甲、乙兩種產(chǎn)品每一道工序的加工結果為A級的概率如表一所示,分別求生產(chǎn)出的甲、乙產(chǎn)品為一等品的概率P、P;
(2)已知一件產(chǎn)品的利潤如表二所示,用ξ、η分別表示一件甲、乙產(chǎn)品的利潤,在(1)的條件下,求ξ、η的分布列及Eξ、Eη;
(3)已知生產(chǎn)一件產(chǎn)品需用的工人數(shù)和資金額如表三所示.該工廠有工人40名,可用資.金60萬元.設x、y分別表示生產(chǎn)甲、乙產(chǎn)品的數(shù)量,在(II)的條件下,x、y為何值時,Z=xEξ+yEη最大?最大值是多少?(解答時須給出圖示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的是某單位的男職工進行健康體檢時的體重情況的頻率分布直方圖,已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為24,那么該單位共有男職工的人數(shù)為( 。
A、150B、120
C、48D、96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(2x+y-3)+(x+3y-4)λ=0,則x+y的值為( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習冊答案