已知函數(shù) (為實常數(shù))  
(1)當時,求函數(shù)上的最大值及相應的值;
(2)當時,討論方程根的個數(shù)
(3)若,且對任意的,都有,求實數(shù)a的取值范圍

(1)當;(2)當時,方程有2個相異的根;當 或時,方程有1個根;當時,方程有0個根;(3) 

解析試題分析:(1) 利用導數(shù)求解極值點,然后確定單調(diào)性,分析最值;(2)把方程的根轉(zhuǎn)化為函數(shù)圖像的交點,利用導數(shù)研究單調(diào)性,進而求最值,然后分析交點的情形即根的情形;(3)通過對函數(shù)單調(diào)性的分析,可得導數(shù)在區(qū)間上大于零恒成立問題,然后轉(zhuǎn)化為最值求解
試題解析:(1),
時, 當時,,

,當時,取等號        4分
(2)易知,故,
方程根的個數(shù)等價于時,方程根的個數(shù)。
=,
時,,函數(shù)遞減,
時,,函數(shù)遞增。
,,作出與直線的圖像,由圖像知:
時,即時,方程有2個相異的根;
 或時,方程有1個根;
時,方程有0個根;               10分
(3)當時,時是增函數(shù),又函數(shù)是減函數(shù),不妨設,則等價于
,故原題等價于函數(shù)時是減函數(shù),
恒成立,即時恒成立。
時是減函數(shù)              16分
(其他解法酌情給分)
考點:導數(shù),函數(shù)的單調(diào)性,函數(shù)的最值

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)為奇函數(shù),求a的值;
(2)若函數(shù)處取得極大值,求實數(shù)a的值;
(3)若,求在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校內(nèi)有一塊以為圓心,為常數(shù),單位為米)為半徑的半圓形(如圖)荒地,該?倓仗幱媱潓ζ溟_發(fā)利用,其中弓形區(qū)域(陰影部分)用于種植學校觀賞植物,區(qū)域用于種植花卉出售,其余區(qū)域用于種植草皮出售.已知種植學校觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元.

(1)設(單位:弧度),用表示弓形的面積;
(2)如果該?倓仗幯埬阋(guī)劃這塊土地,如何設計的大小才能使總利潤最大?并求出該最大值.
(參考公式:扇形面積公式,表示扇形的弧長)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)求的單調(diào)區(qū)間、最大值;
(2)討論關(guān)于的方程的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(是常數(shù))在處的切線方程為,且.
(Ⅰ)求常數(shù)的值;
(Ⅱ)若函數(shù)()在區(qū)間內(nèi)不是單調(diào)函數(shù),求實數(shù)的取值范圍;
(Ⅲ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的值域;
(2)設,函數(shù).若對任意,總存在,使,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)設,試討論單調(diào)性;
(2)設,當時,若,存在,使,求實數(shù)
取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),若在點處的切線斜率為
(Ⅰ)用表示
(Ⅱ)設,若對定義域內(nèi)的恒成立,
(ⅰ)求實數(shù)的取值范圍;
(ⅱ)對任意的,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已函數(shù)是定義在上的奇函數(shù),在.
(1)求函數(shù)的解析式;并判斷上的單調(diào)性(不要求證明);
(2)解不等式

查看答案和解析>>

同步練習冊答案