【題目】某廠以千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每一小時可獲得的利潤是元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于1500元,求的取值范圍;
(2) 要使生產(chǎn)480千克該產(chǎn)品獲得的利潤最大,問:該廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
【答案】(1);(2)該廠以6千克/小時的速度生產(chǎn),可獲得最大利潤為122000元.
【解析】試題分析:(1)由于生產(chǎn)了小時 ,故利潤為,解得.(2)依題意,要生產(chǎn)小時,乘以每小時的利潤,可得利潤的表達(dá)式為,利用配方法可求得當(dāng)時利潤取得最大值,并由此求出最大值.
試題解析:(1)根據(jù)題意,
有,
得,得或,
又,得.
(2)生產(chǎn)480千克該產(chǎn)品獲得的利潤為
, ,
記, ,
則,
當(dāng)且僅當(dāng)時取得最大值,
則獲得的最大利潤為(元),
故該廠以6千克/小時的速度生產(chǎn),可獲得最大利潤為122000元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校對任課教師的年齡狀況和接受教育程度(學(xué)歷)做調(diào)研,其部分結(jié)果(人數(shù)分布)如表:
學(xué)歷 | 35歲以下 | 35~50歲 | 50歲以上 |
本科 | 80 | 30 | 20 |
研究生 | x | 20 | y |
(1)用分層抽樣的方法在35~50歲年齡段的教師中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1人的學(xué)歷為研究生的概率;
(2)若按年齡狀況用分層抽樣的方法抽取N個人,其中35歲以下48人,50歲以上10人,再從這N個人中隨機抽取出1人,此人的年齡為50歲以上的概率為,求x、y的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象如圖所示.
(1)試確定該函數(shù)的解析式;
(2)該函數(shù)的圖象可由的圖象經(jīng)過怎樣的平移和伸縮變換得到?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱,底面為直角梯形,其中,.
(1)求證:側(cè)面PAD⊥底面ABCD;
(2)求三棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查方式中合適的是( )
A.要了解一批節(jié)能燈的使用壽命,采用普查方式
B.調(diào)查你所在班級同學(xué)的身高,采用抽樣調(diào)查方式
C.調(diào)查沱江某段水域的水質(zhì)情況,采用抽樣調(diào)查方式
D.調(diào)查全市中學(xué)生每天的就寢時間,采用普查方式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進一球得3分;在處每投進一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學(xué)在處的投中率,在處的投中率為,該同學(xué)選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求隨機變量的數(shù)學(xué)期望;
(3)試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;
(2)設(shè)函數(shù),當(dāng)時, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點處的切線斜率為0.
(1)討論函數(shù)的單調(diào)性;
(2)在區(qū)間上沒有零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com