【題目】已知函數(shù),且.
(1)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù),當(dāng)時(shí), 恒成立,求的取值范圍.
【答案】(1)(2)
【解析】試題分析:(1)因?yàn)楹瘮?shù)在區(qū)間上是減函數(shù),則恒成立,轉(zhuǎn)化為二次函數(shù)恒成立問題,得解;(2)令, 恒成立等價(jià)于恒成立,利用導(dǎo)數(shù)討論的單調(diào)性求最值.
試題解析:(1)因?yàn)楹瘮?shù)在區(qū)間上是減函數(shù),則,
即在上恒成立
當(dāng)時(shí),令得,
①若,則,解得;②若,則,解得.
綜上,實(shí)數(shù)的取值范圍是.
(2)令,則,
根據(jù)題意,當(dāng)時(shí), 恒成立.
所以.
①當(dāng)時(shí), 時(shí), 恒成立,
所以在上是增函數(shù),且,所以不符合題意
②當(dāng)時(shí), 時(shí), 恒成立.
所以在上是增函數(shù),且,所以不符題意.
③當(dāng)時(shí), 時(shí),恒有,故在上是減函數(shù),
于是“對任意都成立”的充要條件是,
即,解得,故
綜上, 的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)寒成績記錄如下:
甲:82,82,79,95,87
乙:95,75,80,90,85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)求甲、乙兩人成績的平均數(shù)與方差;
(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認(rèn)為選派哪位學(xué)生參加合適,說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象關(guān)于直線對稱.
(1)求實(shí)數(shù)的值;
(2)若對任意的,使得有解,求實(shí)數(shù)的取值范圍;
(3)若時(shí),關(guān)于的方程有四個不等式的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠以千克/小時(shí)的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每一小時(shí)可獲得的利潤是元.
(1)要使生產(chǎn)該產(chǎn)品2小時(shí)獲得的利潤不低于1500元,求的取值范圍;
(2) 要使生產(chǎn)480千克該產(chǎn)品獲得的利潤最大,問:該廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實(shí)際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機(jī)抽取個農(nóng)戶,考察每個農(nóng)戶的年收入與年積蓄的情況進(jìn)行分析,設(shè)第個農(nóng)戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得
(Ⅰ)已知家庭的年結(jié)余對年收入具有線性相關(guān)關(guān)系,求線性回歸方程;
(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在萬以上,即稱該農(nóng)戶已達(dá)小康生活,請預(yù)測農(nóng)戶達(dá)到小康生活的最低年收入應(yīng)為多少萬元?
附:在 中, 其中為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,、分別為左、右頂點(diǎn),為其右焦點(diǎn),是橢圓上異于、的動點(diǎn),且的最小值為-2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過左焦點(diǎn)的直線交橢圓于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二某班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的損壞,可見部分如下:
試著根據(jù)表中的信息解答下列問題:
(Ⅰ)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在[70,80)之間的頻數(shù);
(Ⅱ)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于[70,80)和[80,90)分?jǐn)?shù)段的試卷中抽取7份進(jìn)行分析,再從中任選2人進(jìn)行交流,求交流的學(xué)生中,成績位于[70,80)分?jǐn)?shù)的人恰有一人被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校的一個社會實(shí)踐調(diào)查小組,在對該校學(xué)生的良好“用眼習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120分問卷.對收回的100份有效問卷進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
做不到科學(xué)用眼 | 能做到科學(xué)用眼 | 合計(jì) | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計(jì) | 75 | 25 | 100 |
(1)現(xiàn)按女生是否能做到科學(xué)用眼進(jìn)行分層,從45份女生問卷中抽取了6份問卷,從這6份問卷中再隨機(jī)抽取3份,并記其中能做到科學(xué)用眼的問卷的份數(shù),試求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(2)若在犯錯誤的概率不超過的前提下認(rèn)為良好“用眼習(xí)慣”與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應(yīng)為多少?請說明理由.
附:獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中.
獨(dú)立性檢驗(yàn)臨界值表:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.840 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)與點(diǎn)均在橢圓上,且關(guān)于原點(diǎn)對稱,問:橢圓上是否存在點(diǎn)(點(diǎn)在一象限),使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com