【題目】如圖,四面體ABCD中,△ABC是以BC為斜邊的等腰直角三角形,△BCD是邊長(zhǎng)為2的正三角形.
(Ⅰ)當(dāng)AD為多長(zhǎng)時(shí),?
(Ⅱ)當(dāng)二面角B﹣AC﹣D為時(shí),求AD的長(zhǎng).
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)取BD中點(diǎn)O,連接AO,CO,利用等腰直角三角形與正三角形的性質(zhì)可得:BD⊥平面AOC,即可得出.
(Ⅱ)如圖所示,取BC的中點(diǎn)F,連接DF.利用等腰直角三角形與正三角形的性質(zhì)可得BC⊥平面ADF.經(jīng)過(guò)D點(diǎn)作DE⊥AF,垂足為E,可得DE⊥平面ABC.假設(shè)作EC′⊥AC,垂足為C′.設(shè)DE=x,EF=y(tǒng).可得x2+y2=DF2=3,x=,解得x=,y=1.可得點(diǎn)C′與點(diǎn)C重合.可得:∠DCE為二面角B﹣AC﹣D的平面角,即可得出.
(Ⅰ)取BD中點(diǎn)O,連接AO,CO,
∵△ABC是以BC為斜邊的等腰直角三角形,
△BCD是邊長(zhǎng)為2的正三角形.
∴BC=CD=BD=2,AB=AC=,
∴CO⊥BD,
當(dāng)AC⊥BD時(shí),由,得平面AOC,
∵平面AOC,∴,
∴AD=AB=,
∴當(dāng)AD為時(shí),.
(Ⅱ)如圖所示,取BC的中點(diǎn)F,連接DF.
∵△ABC是以BC為斜邊的等腰直角三角形,
△BCD是邊長(zhǎng)為2的正三角形.
∴.又..
∴平面ADF.
經(jīng)過(guò)D點(diǎn)作,垂足為E,則DE⊥平面ABC.
假設(shè)作EC′⊥AC,垂足為C′.
設(shè)DE=x,EF=y.
則,,
解得.
∴,因此點(diǎn)C′與點(diǎn)C重合.
可得為二面角B﹣AC﹣D的平面角,所以,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) ,記不超過(guò)x的最大整數(shù)為 ,令 ,則 , , ( )
A.是等差數(shù)列但不是等比數(shù)列
B.是等比數(shù)列但不是等差數(shù)列
C.既是等差數(shù)列又是等比數(shù)列
D.既不是等差數(shù)列也不是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)準(zhǔn)備在直角圍墻()內(nèi)建有一個(gè)矩形的少兒游樂(lè)場(chǎng),分別在墻上,為了安全起見(jiàn),過(guò)矩形的頂點(diǎn)建造一條如圖所示的圍欄,分別在墻上,其中,,.
(1)①設(shè),用表示圍欄的長(zhǎng)度;
②設(shè),用表示圍欄的長(zhǎng)度;
(2)在第一問(wèn)中,選擇一種表示方法,求如何設(shè)計(jì),使得圍欄的長(zhǎng)度最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:m),(1)將y表示為x的函數(shù)(2)試確定x , 使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用
(1)將y表示為x的函數(shù):
(2)試確定x , 使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合M={x|x2+3x+2<0},集合 ,則M∪N=( )
A.{x|x≥﹣2}
B.{x|x>﹣1}
C.{x|x<﹣1}
D.{x|x≤﹣2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x2﹣4|+a|x﹣2|,x∈[﹣3,3].若f(x)的最大值是0,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+x﹣lnx,(a>0). (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)f(x)極值點(diǎn)為x0 , 若存在x1 , x2∈(0,+∞),且x1≠x2 , 使f(x1)=f(x2),求證:x1+x2>2x0 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com