【題目】設(shè)集合A={x|-1x2},B={x|m-1x2m+1},已知BA.

(1)當(dāng)xN時(shí),求集合A的子集的個(gè)數(shù);

(2)求實(shí)數(shù)m的取值范圍.

【答案】(1)8(2)

【解析】

試題分析:(1)由集合中含有n個(gè)元素可知集合的子集個(gè)數(shù)為個(gè);(2)由BA可得到兩集合邊界值的大小關(guān)系,從而得到關(guān)于m的不等式,得到m的取值范圍,求解時(shí)集合B要分空集和非空集合兩種情況討論

試題解析:1)∵當(dāng)x∈N時(shí),A={0,1,2},∴集合A的子集的個(gè)數(shù)為23=8.--------4分

(2)①當(dāng)m-1>2m+1,即m<-2時(shí),B=,符合題意;

②當(dāng)m-1≤2m+1,即m≥-2時(shí),B≠.由BA,借助數(shù)軸,如圖所示,

解得0≤m≤,所以0≤m≤。

綜合①②可知,實(shí)數(shù)m的取值范圍為. -----------10分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知過(guò)點(diǎn)的直線的參數(shù)方程是為參數(shù).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程式為.

求直線的普通方程和曲線的直角坐標(biāo)方程;

若直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與直線相切.

(1)求圓的方程;

(2)過(guò)點(diǎn)的直線截圓所得弦長(zhǎng)為,求直線的方程;

(3)設(shè)圓軸的負(fù)半抽的交點(diǎn)為,過(guò)點(diǎn)作兩條斜率分別為的直線交圓兩點(diǎn),且,證明:直線過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通常表明地震能量大小的尺度是里氏震級(jí),其計(jì)算公式為:,其中,是被測(cè)地震的最大振幅,是“標(biāo)準(zhǔn)地震”的振幅使用標(biāo)準(zhǔn)地震振幅是為了修正測(cè)震儀距實(shí)際震中的距離造成的偏差

1假設(shè)在一次地震中,一個(gè)距離震中100千米的測(cè)震儀記錄的地震最大振幅是30,此時(shí)標(biāo)準(zhǔn)地震的振幅是0001,計(jì)算這次地震的震級(jí)精確到01;

25級(jí)地震給人的震感已比較明顯,計(jì)算8級(jí)地震的最大振幅是5級(jí)地震的最大振幅的多少倍?

以下數(shù)據(jù)供參考:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,某城市有一塊半徑為40的半圓形(以為圓心,為直徑)綠化區(qū)域,現(xiàn)計(jì)劃對(duì)其進(jìn)行改建,在的延長(zhǎng)線上取點(diǎn),使,在半圓上選定一點(diǎn),改建后的綠化區(qū)域由扇形區(qū)域和三角形區(qū)域組成,其面積為,設(shè)

(1)寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并指出的取值范圍;

(2)試問(wèn)多大時(shí),改建后的綠化區(qū)域面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接世博會(huì),某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超出6元,則每超過(guò)1元,租不出的自行車就增加3輛為了便于結(jié)算,每輛自行車的日租金只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用表示出租自行車的日凈收入即一日中出租自行車的總收入減去管理費(fèi)用后的所得。

1求函數(shù)的解析式及其定義域;

2試問(wèn)當(dāng)每輛自行車的日租金定為多少元時(shí),才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,集合

1,求實(shí)數(shù)的取值范圍;

2是否存在實(shí)數(shù),使?若存在,求出的值;若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱錐P-ABC中,ACB=90°,CB=4,AB=20,D為AB中點(diǎn),M為PB中點(diǎn),且PDB是正三角形,PAPC。

.

(1)求證:DM平面PAC;

(2)求證:平面PAC平面ABC;

(3)求三棱錐M-BCD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司2016年前三個(gè)月的利潤(rùn)(單位:百萬(wàn)元)如下:

月份

利潤(rùn)

(1)求利潤(rùn)關(guān)于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預(yù)測(cè)月和月的利潤(rùn);

(3)試用(1)中求得的回歸方程預(yù)測(cè)該公司2016年從幾月份開(kāi)始利潤(rùn)超過(guò)萬(wàn)?

相關(guān)公式: , =.

查看答案和解析>>

同步練習(xí)冊(cè)答案