精英家教網 > 高中數學 > 題目詳情
若函數f(x)=2sin(ωx+φ)(ω>0,0≤φ≤
π
2
)的部分圖象如圖所示,其中A,B兩點的間距為5,則( 。
A、ω=
π
3
,φ=
π
3
B、ω=
1
5
,φ=
π
3
C、ω=
π
3
,φ=
π
6
D、ω=
π
3
,φ=
π
6
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:計算題,三角函數的圖像與性質
分析:由函數圖象經過點(0,1),代入解析式得sinφ=
1
2
,解出φ=
π
6
.根據A、B兩點之間的距離為5,由勾股定理解出橫坐標的差為3,得函數的周期T=6,由此算出ω=
π
3
解答: 解:∵函數圖象經過點(0,1),
∴f(0)=2sinφ=1,可得sinφ=
1
2
,
又∵0≤φ≤
π
2

∴φ=
π
6

∵其中A、B兩點的縱坐標分別為2、-2,
∴設A、B的橫坐標之差為d,則|AB|=
d2+(-2-2)2
=5,解之得d=3,
由此可得函數的周期T=6,得
ω
=6,解之得ω=
π
3

故選:C.
點評:本題給出正弦型三角函數的圖象,確定其解析式并求f(-1)的值.著重考查了勾股定理、由y=Asin(ωx+φ)的部分圖象確定其解析式等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知曲線C:
x=3cosθ
y=2sinθ
(參數θ∈[0,2π),直線l:x+2y=10.
(1)設點P是曲線C上任一點,求P到直線l的距離的最大值和最小值;
(2)以原點O為極點,x軸正半軸為極軸,建立極坐標系,取相同的長度單位,求C與直線l的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知O為坐標原點,A(-1,1),B為圓x2+y2=9上的一個動點,則線段AB的中垂線與線段OB的交點E的軌跡是( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數學 來源: 題型:

銳角△ABC中,邊a,b是方程x2-2
3
x+2=0的兩根,角A,B滿足sinAcosB+cosAsinB=
3
2
,求:
(Ⅰ)角C的大;
(Ⅱ)邊c的長度及△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,三棱柱A1B1C1-ABC中,側棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中點,則下列命題中:
①CC1與B1E是異面直線;
②AC⊥底面A1B1BA;
③二面角A-B1E-B為鈍角;
④A1C∥平面AB1E.
其中正確命題的序號為
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖的語句是求S=1+2+3+…+100的一個程序,語句i=i+1應當在這個程序中的①②③④四處的哪一處才能實現上述功能(  )
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數學 來源: 題型:

2014年11月6日,第十屆海峽兩岸林業(yè)博覽會週投資貿易洽談會在福建三明召開,為了做好林博會期間的接待服務工作,三明學院學生實踐活動中心從7名學生會干部(其中男生4人,女生3人)中選3人參加志愿者服務活動.
(1)所選3人中女生人數為ξ,求ξ的分布列及數學期望;
(2)在男生甲被選中的條件下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

設y=f(x)是函數y=ax-1(a>0,a≠1)的反函數,
(1)試比較3f(x)與f(3x)的大;
(2)若在區(qū)間[1,2]上的最大值比最小值大1,求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知實數x,y滿足
x+2≥0
x-y≤0
0≤y≤k
,z=x+y,若z的最大值為12,則z的最小值為
 

查看答案和解析>>

同步練習冊答案