已知函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,若對(duì)任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,則當(dāng)x>3時(shí),x2+y2的取值范圍是( )
A.(3,7) B.(9,25)
C.(13,49) D.(9,49)
C
[解析] 因?yàn)楹瘮?shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,所以函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,所以函數(shù)y=f(x)為R上的奇函數(shù),不等式f(x2-6x+21)+f(y2-8y)<0恒成立,即為f(x2-6x+21)<-f(y2-8y)=f(8y-y2)恒成立,因?yàn)楹瘮?shù)y=f(x)是定義在R上的增函數(shù),所以x2-6x+21<8y-y2恒成立,即x2+y2-6x-8y+21<0恒成立,即點(diǎn)(x,y)恒在圓(x-3)2+(y-4)2=4內(nèi),當(dāng)x>3時(shí),x2+y2表示半圓(x-3)2+(y-4)2=4(x>3)上的點(diǎn)到原點(diǎn)的距離的平方,所以最大為(+2)2=49,最小為點(diǎn)(3,2)到原點(diǎn)的距離的平方,即為32+22=13,所以x2+y2的取值范圍是(13,49).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和.
(1)若{an}是等差數(shù)列,推導(dǎo)Sn的計(jì)算公式;
(2)若a1=1,q≠0,且對(duì)所有正整數(shù)n,有Sn=.判斷{an}是否為等比數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的通項(xiàng)公式為an=2n(n∈N*),把數(shù)列{an}的各項(xiàng)排列成如圖所示的三角形數(shù)陣:
2
22 23
24 25 26
27 28 29 210
……
記M(s,t)表示該數(shù)陣中第s行的第t個(gè)數(shù),則M(11,2)對(duì)應(yīng)的數(shù)是________(用2n的形式表示,n∈N).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知定義域?yàn)镽的偶函數(shù)f(x)在(-∞,0]上是減函數(shù),且f=2,則不等式f(log4x)>2的解集為( )
A.(0,)∪(2,+∞) B.(2,+∞)
C.(0,)∪(,+∞) D.(0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若關(guān)于x的不等式m(x-1)>x2-x的解集為{x|1<x<2},則實(shí)數(shù)m的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)二次函數(shù)f(x)=ax2+bx+c,函數(shù)F(x)=f(x)-x的兩個(gè)零點(diǎn)為m,n(m<n).
(1)若m=-1,n=2,求不等式F(x)>0的解集;
(2)若a>0,且0<x<m<n<,比較f(x)與m的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在R上定義運(yùn)算:=ad-bc.若不等式≥1對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的最大值為( )
A.- B.-
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知b>0,直線(b2+1)x+ay+2=0與直線x-b2y-1=0互相垂直,則ab的最小值等于( )
A.1 B.2 C.2 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
經(jīng)過拋物線y=x2的焦點(diǎn)和雙曲線-=1的右焦點(diǎn)的直線方程為( )
A.x+48y-3=0 B.x+80y-5=0
C.x+3y-3=0 D.x+5y-5=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com