已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個焦點恰好與拋物線的焦點重合.
求橢圓的方程;
設橢圓的上頂點為,過點作橢圓的兩條動弦,若直線斜率之積為,直線是否一定經(jīng)過一定點?若經(jīng)過,求出該定點坐標;若不經(jīng)過,請說明理由.

(1);(2)恒過一定點.

解析試題分析:(1)可設橢圓方程為,因為橢圓的一個焦點恰好與拋物線的焦點重合,所以,又,所以,又因,得,所以橢圓方程為
(2)由(1)知,當直線的斜率不存在時,可設,設,則,
易得,不合題意;故直線的斜率存在.設直線的方程為:,(),并代入橢圓方程,得: ①,設,則是方程①的兩根,由韋達定理,由,利用韋達定理代入整理得,又因為,所以,此時直線的方程為,即可得出直線的定點坐標.
(1)由題意可設橢圓方程為,
因為橢圓的一個焦點恰好與拋物線的焦點重合,所以,
,所以,
又因,得,
所以橢圓方程為;    
(2)由(1)知,
當直線的斜率不存在時,設,設,則,
,不合題意.
故直線的斜率存在.設直線的方程為:,(),并代入橢圓方程,得:
 ①
 ②
,則是方程①的兩根,由韋達定理

得:
,
,整理得
,
又因為,所以,此時直線的方程為.
所以直線恒過一定點     
考點:橢圓的標準方程;圓錐曲線的定點問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線C:的焦點為F,直線與y軸的交點為P,與C的交點為Q,且.
(1)求C的方程;
(2)過F的直線與C相交于A,B兩點,若AB的垂直平分線與C相較于M,N兩點,且A,M,B,N四點在同一圓上,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,原點為,拋物線的方程為,線段是拋物線的一條動弦.
(1)求拋物線的準線方程和焦點坐標;
(2)若,求證:直線恒過定點;
(3)當時,設圓,若存在且僅存在兩條動弦,滿足直線與圓相切,求半徑的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓,、是橢圓的左右焦點,且橢圓經(jīng)過點.
(1)求該橢圓方程;
(2)過點且傾斜角等于的直線,交橢圓于、兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2011•山東)在平面直角坐標系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過原點的直線l交橢圓C于A,B兩點,線段AB的中點為E,射線OE交橢圓C于點G,交直線x=﹣3于點D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點;
(ii)試問點B,G能否關于x軸對稱?若能,求出此時△ABG的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:的離心率為,短軸一個端點到右焦點的距離為
(1)求橢圓C的方程;
(2)設直線與橢圓C交于A、B兩點,以弦為直徑的圓過坐標原點,試探討點到直線的距離是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y = -3上,M點滿足, ,M點的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動點,l為C在P點處得切線,求O點到l距離的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓C1=1(a>b>0)的左、右焦點分別為為,恰是拋物線C2的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
(1)求C1的方程;
(2)平面上的點N滿足,直線l∥MN,且與C1交于A,B兩點,若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知,分別是橢圓的四個頂點,△是一個邊長為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點是圓劣弧上一動點(點異于端點,),直線分別交線段,橢圓于點,直線交于點
(。┣的最大值;
(ⅱ)試問:..,兩點的橫坐標之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

同步練習冊答案