在平面直角坐標(biāo)系中,原點(diǎn)為,拋物線的方程為,線段是拋物線的一條動弦.
(1)求拋物線的準(zhǔn)線方程和焦點(diǎn)坐標(biāo);
(2)若,求證:直線恒過定點(diǎn);
(3)當(dāng)時,設(shè)圓,若存在且僅存在兩條動弦,滿足直線與圓相切,求半徑的取值范圍?
(1)準(zhǔn)線方程:,焦點(diǎn)坐標(biāo);(2)證明見解析;(3).
解析試題分析:(1)根據(jù)拋物線標(biāo)準(zhǔn)方程確定焦點(diǎn)在哪個軸上及開口方向,焦點(diǎn)為,準(zhǔn)線方程為;(2)本題實(shí)質(zhì)是直線與拋物線相交問題,一般是設(shè)直線方程為,與拋物線方程聯(lián)立方程組,消去可得,再設(shè),則有,,而,把剛才求出的代入可得的關(guān)系,本題中求得為常數(shù),因此直線A一定過定點(diǎn);(3)由(2)利用可求出的關(guān)系式,
,則,而直線與圓相切,則圓心到直線的距離等于圓的半徑,即,由題意,作為關(guān)于的方程,此方程只有兩解,設(shè),則有,由于在時是減函數(shù),且,即函數(shù)在時遞減,在時遞增,因此為了保證有兩解,即只有一解,故要求.
試題解析:(1)準(zhǔn)線方程: +2分 焦點(diǎn)坐標(biāo): +4分
(2)設(shè)直線方程為 ,
得 +6分
+8分
直線 過定點(diǎn)(0,2) +9分
(3) +11分
+12分 令
當(dāng)時, 單調(diào)遞減, +13分
當(dāng)時, 單調(diào)遞增, +14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖5,為坐標(biāo)原點(diǎn),雙曲線和橢圓均過點(diǎn),且以的兩個頂點(diǎn)和的兩個焦點(diǎn)為頂點(diǎn)的四邊形是面積為2的正方形.
(1)求的方程;
(2)是否存在直線,使得與交于兩點(diǎn),與只有一個公共點(diǎn),且?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的兩個焦點(diǎn)為、點(diǎn)在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓∶的左、右焦點(diǎn)分別、焦距為,且與雙曲線共頂點(diǎn).為橢圓上一點(diǎn),直線交橢圓于另一點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)的坐標(biāo)為,求過、、三點(diǎn)的圓的方程;
(3)若,且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個焦點(diǎn)為,且離心率為.
(1)求橢圓方程;
(2)斜率為的直線過點(diǎn),且與橢圓交于兩點(diǎn),為直線上的一點(diǎn),若△為等邊三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:( )的離心率為,點(diǎn)(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點(diǎn)M(4,),其中,切點(diǎn)分別是A、B,試?yán)媒Y(jié)論:在橢圓上的點(diǎn)()處的橢圓切線方程是,證明直線AB恒過橢圓的右焦點(diǎn);
(3)試探究的值是否恒為常數(shù),若是,求出此常數(shù);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A、B為拋物線C:y2 = 4x上的兩個動點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在第四象限l1、l2分別過點(diǎn)A、B且與拋物線C相切,P為l1、l2的交點(diǎn).
(1)若直線AB過拋物線C的焦點(diǎn)F,求證:動點(diǎn)P在一條定直線上,并求此直線方程;
(2)設(shè)C、D為直線l1、l2與直線x = 4的交點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,它的一個焦點(diǎn)恰好與拋物線的焦點(diǎn)重合.
求橢圓的方程;
設(shè)橢圓的上頂點(diǎn)為,過點(diǎn)作橢圓的兩條動弦,若直線斜率之積為,直線是否一定經(jīng)過一定點(diǎn)?若經(jīng)過,求出該定點(diǎn)坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓E ,點(diǎn),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點(diǎn)Q的軌跡的方程;
(2)點(diǎn),,點(diǎn)G是軌跡上的一個動點(diǎn),直線AG與直線相交于點(diǎn)D,試判斷以線段BD為直徑的圓與直線GF的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com