【題目】袋中共有8個(gè)球,其中有3個(gè)白球,5個(gè)黑球,這些球除顏色外完全相同.從袋中隨機(jī)取出一球,如果取出白球,則把它放回袋中;如果取出黑球,則該黑球不再放回,并且另補(bǔ)一個(gè)白球放入袋中.重復(fù)上述過(guò)程次后,袋中白球的個(gè)數(shù)記為.
(1)求隨機(jī)變量的概率分布及數(shù)學(xué)期望;
(2)求隨機(jī)變量的數(shù)學(xué)期望關(guān)于的表達(dá)式.
【答案】(1)概率分布詳見(jiàn)解析,;(2).
【解析】
(1)的可能取值為3,4,5,計(jì)算概率得到分布列,計(jì)算數(shù)學(xué)期望得到答案.
(2)設(shè),則,計(jì)算概率得到數(shù)學(xué)期望,整理化簡(jiǎn)得到,根據(jù)數(shù)列知識(shí)得到答案.
(1)由題意可知3,4,5.
當(dāng)時(shí),即二次摸球均摸到白球,其概率是;
當(dāng)時(shí),即二次摸球恰好摸到一白,一黑球,
其概率是;
當(dāng)時(shí),即二次摸球均摸到黑球,其概率是,
所以隨機(jī)變量的概率分布如下表:
數(shù)學(xué)期望.
(2)設(shè),0,1,2,3,4,5.
則,.
,,,
,,
,
∴
,
由此可知,,
又,故是首項(xiàng)為,公比為的等比數(shù)列,
∴,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題實(shí)數(shù)滿足(其中),命題方程表示雙曲線.
(I)若,且為真命題,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游戲廠商對(duì)新出品的一款游戲設(shè)定了“防沉迷系統(tǒng)”,規(guī)則如下:
①3小時(shí)以內(nèi)(含3小時(shí))為健康時(shí)間,玩家在這段時(shí)間內(nèi)獲得的累積經(jīng)驗(yàn)值單位:與游玩時(shí)間小時(shí))滿足關(guān)系式:;
②3到5小時(shí)(含5小時(shí))為疲勞時(shí)間,玩家在這段時(shí)間內(nèi)獲得的經(jīng)驗(yàn)值為即累積經(jīng)驗(yàn)值不變);
③超過(guò)5小時(shí)為不健康時(shí)間,累積經(jīng)驗(yàn)值開(kāi)始損失,損失的經(jīng)驗(yàn)值與不健康時(shí)間成正比例關(guān)系,比例系數(shù)為50.
⑴當(dāng)時(shí),寫(xiě)出累積經(jīng)驗(yàn)值E與游玩時(shí)間t的函數(shù)關(guān)系式,并求出游玩6小時(shí)的累積經(jīng)驗(yàn)值;
⑵該游戲廠商把累積經(jīng)驗(yàn)值E與游玩時(shí)間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時(shí)間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】物聯(lián)網(wǎng)興起、發(fā)展、完善極大的方便了市民生活需求.某市統(tǒng)計(jì)局隨機(jī)地調(diào)查了該市某社區(qū)的100名市民網(wǎng)上購(gòu)菜狀況,其數(shù)據(jù)如下:
每周網(wǎng)上買菜次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 | 總計(jì) |
男 | 10 | 8 | 7 | 3 | 2 | 15 | 45 |
女 | 5 | 4 | 6 | 4 | 6 | 30 | 55 |
總計(jì) | 15 | 12 | 13 | 7 | 8 | 45 | 100 |
(1)把每周網(wǎng)上買菜次數(shù)超過(guò)3次的用戶稱為“網(wǎng)上買菜熱愛(ài)者”,能否在犯錯(cuò)誤概率不超過(guò)0.005的前提下,認(rèn)為是否為“網(wǎng)上買菜熱愛(ài)者”與性別有關(guān)?
(2)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“網(wǎng)上買菜達(dá)人”,視頻率為概率,在我市所有“網(wǎng)上買菜達(dá)人”中,隨機(jī)抽取4名用戶求既有男“網(wǎng)上買菜達(dá)人”又有女“網(wǎng)上買菜達(dá)人”的概率.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方體中,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn),平面交棱于點(diǎn).給出下列命題:
①存在點(diǎn),使得//平面;
②對(duì)于任意的點(diǎn),平面平面;
③存在點(diǎn),使得平面;
④對(duì)于任意的點(diǎn),四棱錐的體積均不變.
其中正確命題的序號(hào)是______.(寫(xiě)出所有正確命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三邊長(zhǎng)分別為a、b、c,且滿足.
(1)是否存在邊長(zhǎng)均為整數(shù)的△ABC?若存在,求出三邊長(zhǎng);若不存在,說(shuō)明理由.
(2)若,,,求出△ABC周長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊鐵皮零件,其形狀是由邊長(zhǎng)為的正方形截去一個(gè)三角形所得的五邊形,其中,如圖所示.現(xiàn)在需要用這塊材料截取矩形鐵皮,使得矩形相鄰兩邊分別落在上,另一頂點(diǎn)落在邊或邊上.設(shè),矩形的面積為.
(1)試求出矩形鐵皮的面積關(guān)于的函數(shù)解析式,并寫(xiě)出定義域;
(2)試問(wèn)如何截取(即取何值時(shí)),可使得到的矩形的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解本市的交通狀況,某校高一年級(jí)的同學(xué)分成了甲、乙、丙三個(gè)組,從下午13點(diǎn)到18點(diǎn),分別對(duì)三個(gè)路口的機(jī)動(dòng)車通行情況進(jìn)行了實(shí)際調(diào)查,并繪制了頻率分布直方圖(如圖),記甲、乙、丙三個(gè)組所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為,則它們的大小關(guān)系為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com