【題目】已知正方體ABCD﹣A1B1C1D1 , O是底ABCD對角線的交點(diǎn).求證:
(1)C1O∥面AB1D1;
(2)平面A1AC⊥面AB1D1

【答案】
(1)證明:連結(jié)A1C1,設(shè)A1C1∩B1D1=O1,

連結(jié)AO1,因?yàn)锳BCD﹣A1B1C1D1是正方體∴A1ACC1是平行四邊形

∴AC∥A1C1且 AC=A1C1

又O,O1分別是AC,A1C1的中點(diǎn),∴O1C1∥AO且O1C1=AO,

∴O1C1AO是平行四邊形

∴OC1∥AO1,AO1面AB1D1,O1C面AB1D1

∴C1O∥面AB1D1


(2)證明:∵CC1⊥面A1B1C1D1,∴CC1⊥B1D1,

又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,

即A1C⊥B1D1,

同理可證A1C⊥AB1

又AB1∩B1D1=B1,

∴A1C⊥面AB1D1,

∴平面A1AC⊥面AB1D1


【解析】(1)連結(jié)A1C1 , 設(shè)A1C1∩B1D1=O1 , 連結(jié)AO1 , 證明OC1∥AO1 , 然后證明C1O∥面AB1D1 . (2)證明A1C⊥B1D1 , A1C⊥AB1 , 推出A1C⊥面AB1D1 , 即可證明平面A1AC⊥面AB1D1
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面平行的判定和平面與平面垂直的判定的相關(guān)知識(shí)可以得到問題的答案,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽,且f(x)不為常值函數(shù),有以下命題: ①函數(shù)g(x)=f(x)+f(﹣x)一定是偶函數(shù);
②若對任意x∈R都有f(x)+f(2﹣x)=0,則f(x)是以2為周期的周期函數(shù);
③若f(x)是奇函數(shù),且對于任意x∈R,都有f(x)+f(2+x)=0,則f(x)的圖象的對稱軸方程為x=2n+1(n∈Z);
④對于任意的x1 , x2∈R,且x1≠x2 , 若 >0恒成立,則f(x)為R上的增函數(shù),
其中所有正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)是R上以5為周期的可導(dǎo)偶函數(shù),則曲線y=f(x)在x=5處的切線的斜率為(
A.-
B.0
C.
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) ,且0<x1<x2<1,設(shè) ,則a,b的大小關(guān)系是(
A.a>b
B.a<b
C.a=b
D.b的大小關(guān)系不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市AB兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊(duì)員水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人、女生中隨機(jī)抽取3人組成代表隊(duì).

(1)A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率;

(2)某場比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分某校甲、乙兩個(gè)班級各有5名編號為1,2,3,4,5的學(xué)生進(jìn)行投籃訓(xùn)練,每人投10次,投中的次數(shù)統(tǒng)計(jì)如下表

學(xué)生

1號

2號

3號

4號

5號

甲班

6

5

7

9

8

乙班

4

8

9

7

7

(1)從統(tǒng)計(jì)數(shù)據(jù)看,甲、乙兩個(gè)班哪個(gè)班成績更穩(wěn)定數(shù)字特征說明;

(2)若把上表數(shù)據(jù)作為學(xué)生投籃命中率,規(guī)定兩個(gè)班級的1號和2號同學(xué)分別代表自己的班級參加比賽,每人投籃一次,將甲、乙兩個(gè)班兩名同學(xué)投中的次數(shù)之和分別記作,試求的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)數(shù)z=(x﹣1)+yi(x∈R,y≥0),若|z|≤1,則y≥x的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的中心為O,四邊形ODEF為矩形,平面ODEF平面ABCD,DE=DA=DB=2

(I)若GDC的中點(diǎn),求證:EG//平面BCF;

(II)若 ,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=x3+ax2+bx+1的導(dǎo)函數(shù)f′(x)滿足f′(x)=2a,f′(2)=﹣b,
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè)g(x)=f′(x)ex , 求函數(shù)g(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案