【題目】設復數(shù)z=(x﹣1)+yi(x∈R,y≥0),若|z|≤1,則y≥x的概率為(
A.
B.
C.
D.

【答案】C
【解析】解:∵復數(shù)z=(x﹣1)+yi(x,y∈R)且|z|≤1, ∴|z|= ≤1,即(x﹣1)2+y2≤1,
∴點(x,y)在(1,0)為圓心1為半徑的圓及其內(nèi)部,
而y≥x表示直線y=x左上方的部分,(圖中陰影弓形)
∴所求概率為弓形的面積與圓的面積一半的之比,
∴所求概率P= =
故選:C.

【考點精析】認真審題,首先需要了解復數(shù)的模(絕對值)(復平面內(nèi)復數(shù)所對應的點到原點的距離,是非負數(shù),因而兩復數(shù)的?梢员容^大。粡蛿(shù)模的性質(zhì):(1)(2)(3)若為虛數(shù),則),還要掌握幾何概型(幾何概型的特點:1)試驗中所有可能出現(xiàn)的結果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)當時, 恒成立,求的最大值;

(3)設,若的值域為,求的取值范圍.(提示: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結束后憑分數(shù)兌換獎品.

(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為X,求X≤3的概率;

(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學期望較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體ABCD﹣A1B1C1D1 , O是底ABCD對角線的交點.求證:
(1)C1O∥面AB1D1;
(2)平面A1AC⊥面AB1D1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個內(nèi)角,則(
A.f(sinα)>f(sinβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)
D.f(sinα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=2ax﹣ +lnx,若f(x)在x=1,x= 處取得極值, (Ⅰ)求a、b的值;
(Ⅱ)求f(x)在[ ,2]上的單調(diào)區(qū)間
(Ⅲ)在[ ,2]存在x0 , 使得不等式f(x0)﹣c≤0成立,求c的最小值.
(參考數(shù)據(jù):e2≈7.389,e3≈20.08)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣3x+alnx(a>0). (Ⅰ)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)設函數(shù)f(x)圖象上任意一點的切線l的斜率為k,當k的最小值為1時,求此時切線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)求不等式a2x1>ax+2(a>0,且a≠1)中x的取值范圍(用集合表示).
(2)已知f(x)是定義在R上的奇函數(shù),且當x>0時,f(x)= +1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】放射性元素由于不斷有原子放射出微粒子而變成其他元素,其含量不斷減少,這種現(xiàn)象稱為衰變.假設在放射性同位素銫137的衰變過程中,其含量M(單位:太貝克)與時間t(單位:年)滿足函數(shù)關系:M(t)=M0 ,其中M0為t=0時銫137的含量.已知t=30時,銫137含量的變化率是﹣10In2(太貝克/年),則M(60)=(
A.5太貝克
B.75In2太貝克
C.150In2太貝克
D.150太貝克

查看答案和解析>>

同步練習冊答案