【題目】已知,.
(1)解不等式;
(2)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對任意的恒成立,求實數(shù)t的取值范圍.
【答案】(1);(2).
【解析】
(1)設(shè),不等式,轉(zhuǎn)化為,結(jié)合一元二次不等式的解法,即可求得不等式的解集;
(2)由題設(shè)條件,列出方程組,求得、的解析式把不等式對任意的恒成立,轉(zhuǎn)化為對任意的恒成立,再利用分離參數(shù)法和對勾函數(shù)的性質(zhì),即可求解.
(1)由題意,設(shè),因為不等式,
可得,即,解得,即,解得,
所以不等式的解集為.
(2)由題意,函數(shù),其中為奇函數(shù),為偶函數(shù),
可得,即,
解得,
則不等式對任意的恒成立,
即為對任意的恒成立,
對任意的恒成立,
令,可得,
所以,即對任意的恒成立,
因為在遞減,在遞增,
所以當(dāng)時,有最大值,
所以實數(shù)t的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(,,)的部分圖像如圖所示.
(1)求函數(shù)的解析式及圖像的對稱軸方程;
(2)把函數(shù)圖像上點的橫坐標(biāo)擴大到原來的2倍(縱坐標(biāo)不變),再向左平移個單位,得到函數(shù)的圖象,求關(guān)于x的方程在時所有的實數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)以原點為極點x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;
(Ⅱ)設(shè)與曲線交于兩點,與曲線交于兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類似于平面直角坐標(biāo)系,定義平面斜坐標(biāo)系:設(shè)數(shù)軸、的交點為,與、軸正方向同向的單位向量分別是、,且與的夾角為,其中,由平面向量基本定理:對于平面內(nèi)的向量,存在唯一有序?qū)崝?shù)對,使得,把叫做點在斜坐標(biāo)系中的坐標(biāo),也叫做向量在斜坐標(biāo)系中的坐標(biāo),記為,在平面斜坐標(biāo)系內(nèi),直線的方向向量、法向量、點方向式方程、一般式方程等概念與平面直角坐標(biāo)系內(nèi)相應(yīng)概念以相同方式定義,如時,方程表示斜坐標(biāo)系內(nèi)一條過點,且方向向量為的直線.
(1)若,,,求;
(2)若,已知點和直線;
①求的一個法向量;
②求點到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若在上恒成立,求正數(shù)的取值范圍;
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(4,0)、B(1,0),動點M滿足|AM|=2|BM|.
(1)求動點M的軌跡C的方程;
(2)直線l:x+y=4,點N∈l,過N作軌跡C的切線,切點為T,求NT取最小時的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡(luò)外賣也開始成為不少人日常生活中不可或缺的一部分.某市一調(diào)查機構(gòu)針對該市市場占有率最高的甲、乙兩家網(wǎng)絡(luò)外賣企業(yè)(以下簡稱外賣甲,外賣乙)的經(jīng)營情況進行了調(diào)查,調(diào)查結(jié)果如表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外賣甲日接單(百單) | 5 | 2 | 9 | 8 | 11 |
外賣乙日接單(百單) | 2.2 | 2.3 | 10 | 5 | 15 |
(1)據(jù)統(tǒng)計表明,與之間具有線性相關(guān)關(guān)系.
(。┱堄孟嚓P(guān)系數(shù)加以說明:(若,則可認為與有較強的線性相關(guān)關(guān)系(值精確到0.001))
(ⅱ)經(jīng)計算求得與之間的回歸方程為.假定每單外賣業(yè)務(wù)企業(yè)平均能獲純利潤3元,試預(yù)測當(dāng)外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍:(值精確到0.01)
(2)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經(jīng)營狀況.
相關(guān)公式:相關(guān)系數(shù),
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點滿足: .
(1)求動點的軌跡的方程;
(2)設(shè)過點的直線與曲線交于兩點,點關(guān)于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com