【題目】如圖所示,正三角形的邊長為2, 分別在三邊上, 的中點,

(Ⅰ)當時,求的大;

(Ⅱ)求的面積的最小值及使得取最小值時的值.

【答案】時, 取最小值

【解析】試題分析:本題主要考查正弦定理、直角三角形中正切的定義、兩角和的正弦公式、倍角公式、三角形面積公式等基礎知識,考查學生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,在中, ,而在中,利用正弦定理,用表示,在中,利用正弦定理,用表示,代入到式中,再利用兩角和的正弦公式展開,解出,利用特殊角的三角函數(shù)值求角;第二問,將第一問得到的代入到三角形面積公式中,利用兩角和的正弦公式和倍角公式化簡表達式,利用正弦函數(shù)的有界性確定的最小值.

試題解析:在中,由正弦定理得,在中,由正弦定理得.由,得,整理得,所以

2

時, 取最小值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= aR,e為自然對數(shù)的底數(shù))

(Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)f(x)在 上無零點,求a的最小值;

(Ⅲ)若對任意給定的x0∈(0,e],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐, 平面平面,.

1)求證:平面;

2)求直線與平面所成角的正弦值;

3)在棱上是否存在點,使得平面?若存在, 的值;若不存在, 說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知定點、,動點滿足,設點的曲線為,直線交于兩點.

1)寫出曲線的方程,并指出曲線的軌跡;

2)當,求實數(shù)的取值范圍;

3)證明:存在直線,滿足,并求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)(2017·長春市二模)如圖,在四棱錐中,底面是菱形,,平面,,點,分別為中點.

(1)求證:直線平面

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,有三根針和套在一根針上的個金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.

(1)每次只能移動一個金屬片;

(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.

個金屬片從1號針移到3號針最少需要移動的次數(shù)記為,則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記實數(shù)、、中的最大數(shù)為,最小數(shù)為.的三邊邊長分別為、,且,定義的傾斜度為.

1)若為等腰三角形,則_____;

2)設,則的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某日用品按行業(yè)質(zhì)量標準分成五個等級,等級系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中隨機抽取20件,對其等級系數(shù)進行統(tǒng)計分析,得到頻率分布表如下:

X

1

2

3

4

5

頻率

a

02

045

b

c

1)若所抽取的20件日用品中,等級系數(shù)為4的恰有3件,等級系數(shù)為5的恰有2件,求ab,c的值;

2)在(1)的條件下,將等級系數(shù)為43件日用品記為,等級系數(shù)為52件日用品記為,現(xiàn)從5件日用品中任取兩件(假定每件日用品被取出的可能性相同),求這兩件日用品的等級系數(shù)恰好相等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,經(jīng)過點F的直線與拋物線C交于不同的兩點A,B的最小值為4.

1)求拋物線C的方程;

2)已知PQ是拋物線C上不同的兩點,若直線恰好垂直平分線段PQ,求實數(shù)k 的取值范圍.

查看答案和解析>>

同步練習冊答案