【題目】[選修4-5:不等式選講]已知函數(shù)f(x)=|x﹣a|+|2x﹣1|(a∈R).
(Ⅰ)當a=1時,求f(x)≤2的解集;
(Ⅱ)若f(x)≤|2x+1|的解集包含集合[ ,1],求實數(shù)a的取值范圍.

【答案】解:( I)當a=1時,f(x)=|x﹣1|+|2x﹣1|,f(x)≤2|x﹣1|+|2x﹣1|≤2, 上述不等式可化為
解得

∴原不等式的解集為
( II)∵f(x)≤|2x+1|的解集包含 ,
∴當 時,不等式f(x)≤|2x+1|恒成立,
即|x﹣a|+|2x﹣1|≤|2x+1|在 上恒成立,
∴|x﹣a|+2x﹣1≤2x+1,
即|x﹣a|≤2,∴﹣2≤x﹣a≤2,
∴x﹣2≤a≤x+2在 上恒成立,
∴(x﹣2)max≤a≤(x+2)min , ∴
所以實數(shù)a的取值范圍是
【解析】( I)運用分段函數(shù)求得f(x)的解析式,由f(x)≤2,即有 ,解不等式即可得到所求解集;(Ⅱ)由題意可得當 時,不等式f(x)≤|2x+1|恒成立.即有(x﹣2)max≤a≤(x+2)min . 求得不等式兩邊的最值,即可得到a的范圍.
【考點精析】解答此題的關鍵在于理解絕對值不等式的解法的相關知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C: =1經過點(2,3),兩條漸近線的夾角為60°,直線l交雙曲線于A,B兩點.
(1)求雙曲線C的方程;
(2)若l過原點,P為雙曲線上異于A,B的一點,且直線PA,PB的斜率kPA , kPB均存在,求證:kPAkPB為定值;
(3)若l過雙曲線的右焦點F1 , 是否存在x軸上的點M(m,0),使得直線l繞點F1無論怎樣轉動,都有 =0成立?若存在,求出M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z=lg(m2﹣2m﹣2)+(m2+3m+2)i,根據以下條件分別求實數(shù)m的值或范圍.
(1)z是純虛數(shù);
(2)z對應的點在復平面的第二象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知如圖所示的程序框圖

(1)當輸入的x為2,﹣1時,分別計算輸出的y值,并寫出輸出值y關于輸入值x的函數(shù)關系式;
(2)當輸出的結果為4時,求輸入的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年上半年,股票投資人袁先生同時投資了甲、乙兩只股票,其中甲股票賺錢的概率為 ,賠錢的概率是 ;乙股票賺錢的概率為 ,賠錢的概率為 .對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元. (Ⅰ)求袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=(2x2﹣ax﹣6a2)ln(x﹣a)的值域是[0,+∞),則實數(shù)a=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量X﹣N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機投擲10000個點,則落入陰影部分的點個數(shù)的估計值為( ) 附:若隨機變量ξ﹣N(μ,σ2),則P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544.

A.6038
B.6587
C.7028
D.7539

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=2, cos2B+5cosB﹣ =0,且點D在線段BC上.
(1)若∠ADC= ,求AD的長;
(2)若BD=2DC, =4 ,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax+ ,且f(x)+f( )=0,其中a,b為常數(shù).
(1)若函數(shù)f(x)的圖象在x=1的切線經過點(2,5),求函數(shù)的解析式;
(2)已知0<a<1,求證:f( )>0;
(3)當f(x)存在三個不同的零點時,求a的取值范圍.

查看答案和解析>>

同步練習冊答案