【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為:(為參數(shù)),,為直線上距離為的兩動(dòng)點(diǎn),點(diǎn)為曲線上的動(dòng)點(diǎn)且不在直線上.
(1)求曲線的普通方程及直線的直角坐標(biāo)方程.
(2)求面積的最大值.
【答案】(1)直線的直角坐標(biāo)方程為,曲線的普通方程為(2)
【解析】
(1)直線的極坐標(biāo)方程利用兩角差的余弦公式展開,再利用公式,將方程化成普通方程形式;對(duì)曲線的參數(shù)進(jìn)行消參,從而得到普通方程;
(2)設(shè)點(diǎn),將點(diǎn)到直線的距離轉(zhuǎn)化為三角函數(shù)的值域問(wèn)題.
(1)直線的極坐標(biāo)方程化成,
,直線的直角坐標(biāo)方程為,
曲線的參數(shù)方程化成:.
平方相加得,即
(2)設(shè)點(diǎn),則到直線的距離為:
,
當(dāng)時(shí),,
設(shè)的面積為,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中,若、、是的三條邊長(zhǎng),則下列結(jié)論:①對(duì)于一切都有;②存在使、、不能構(gòu)成一個(gè)三角形的三邊長(zhǎng);③為鈍角三角形,存在,使,其中正確的個(gè)數(shù)為______個(gè)
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市有東、西、南、北四個(gè)進(jìn)入城區(qū)主干道的入口,在早高峰時(shí)間段,時(shí)常發(fā)生交通擁堵,交警部門記錄了11月份30天內(nèi)的擁堵情況(如下表所示,其中●表示擁堵,○表示通暢).假設(shè)每個(gè)人口是否發(fā)生擁堵相互獨(dú)立,將各入口在這30天內(nèi)擁堵的頻率代替各入口每天擁堵的概率.
11.1 | 11.2 | 11.3 | 11.4 | 11.5 | 11.6 | 11.7 | 11.8 | 11.9 | 11.10 | 11.11 | 11.12 | 11.13 | 11.14 | 11.15 | ||||||||||||||||
東入口 | ● | ○ | ○ | ○ | ○ | ● | ○ | ● | ● | ○ | ● | ● | ● | ○ | ● | |||||||||||||||
西入口 | ○ | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ● | ○ | ○ | |||||||||||||||
南入口 | ○ | ● | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ● | ○ | ○ | ○ | ● | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
11.16 | 11.17 | 11.18 | 11.19 | 11.20 | 11.21 | 11.22 | 11.23 | 11.24 | 11.25 | 11.26 | 11.27 | 11.28 | 11.29 | 11.30 | ||||||||||||||||
東入口 | ● | ○ | ○ | ● | ○ | ○ | p>○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | |||||||||||||||
西入口 | ● | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | |||||||||||||||
南入口 | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
(1)分別求該城市一天中早高峰時(shí)間段這四個(gè)主干道的入口發(fā)生擁堵的概率.
(2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來(lái)疏通,聘請(qǐng)交通協(xié)管員有以下兩種方案可供選擇.方案一:四個(gè)主干道入口在早高峰時(shí)間段每天各聘請(qǐng)一位交通協(xié)管員,聘請(qǐng)每位交通協(xié)管員的日費(fèi)用為(,且)元.方案二:在早高峰時(shí)間段若某主干道入口發(fā)生擁堵,交警部門則需臨時(shí)調(diào)派兩位交通協(xié)管員協(xié)助疏通交通,調(diào)派后當(dāng)日需給每位交通協(xié)管員的費(fèi)用為200元.以四個(gè)主干道入口聘請(qǐng)交通協(xié)管員的日總費(fèi)用的數(shù)學(xué)期望為依據(jù),你認(rèn)為在這兩個(gè)方案中應(yīng)該如何選擇?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,點(diǎn)
(1)求點(diǎn)與拋物線的焦點(diǎn)的距離;
(2)設(shè)斜率為的直線與拋物線交于兩點(diǎn),若的面積為,求直線的方程;
(3)是否存在定圓,使得過(guò)曲線上任意一點(diǎn)作圓的兩條切線,與曲線交于另外兩點(diǎn)時(shí),總有直線也與圓相切?若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路經(jīng)過(guò)三個(gè)景點(diǎn)、、,景區(qū)管委會(huì)又開發(fā)了風(fēng)景優(yōu)美的景點(diǎn),經(jīng)測(cè)量景點(diǎn)位于景點(diǎn)的北偏東方向處,位于景點(diǎn)的正北方向,還位于景點(diǎn)的北偏西方向上,已知.
(1)景區(qū)管委會(huì)準(zhǔn)備由景點(diǎn)向景點(diǎn)修建一條筆直的公路,不考慮其他因素,求出這條公路的長(zhǎng);(結(jié)果精確到)
(2)求景點(diǎn)與景點(diǎn)之間的距離.(結(jié)果精確到)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某紀(jì)念章從某年某月某日起開始上市,通過(guò)市場(chǎng)調(diào)査,得到該紀(jì)念章每枚的市場(chǎng)價(jià)(單位:元)與上市時(shí)間(單位:天)的數(shù)據(jù)如下:
上市時(shí)間天 | |||
市場(chǎng)價(jià)元 |
(1)根據(jù)上表數(shù)計(jì),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場(chǎng)價(jià)與上市時(shí)間的變化關(guān)系并說(shuō)明理由:①;②;③;④;
(2)利用你選取的函數(shù),求該紀(jì)念章市場(chǎng)價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,若,.
(1)證明:當(dāng)時(shí),;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家每年都會(huì)對(duì)中小學(xué)生進(jìn)行體質(zhì)健康監(jiān)測(cè),一分鐘跳繩是監(jiān)測(cè)的項(xiàng)目之一.今年某小學(xué)對(duì)本校六年級(jí)300名學(xué)生的一分鐘跳繩情況做了統(tǒng)計(jì),發(fā)現(xiàn)一分鐘跳繩個(gè)數(shù)最低為10,最高為189.現(xiàn)將跳繩個(gè)數(shù)分成,,,,,6組,并繪制出如下的頻率分布直方圖.
(1)若一分鐘跳繩個(gè)數(shù)達(dá)到160為優(yōu)秀,求該校六年級(jí)學(xué)生一分鐘跳繩為優(yōu)秀的人數(shù);
(2)上級(jí)部門要對(duì)該校體質(zhì)監(jiān)測(cè)情況進(jìn)行復(fù)查,發(fā)現(xiàn)每組男、女學(xué)生人數(shù)比例有很大差別,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為.試估計(jì)此校六年級(jí)男生一分鐘跳繩個(gè)數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列:,,,(),與數(shù)列:,,,,(),記.
(1)若,求的值;
(2)求的表達(dá)式;
(3)已知,且存在正整數(shù),使得在中有4項(xiàng)為100,求的值,并指出哪4項(xiàng)為100.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com