【題目】已知直線2xy10與直線x2y+10交于點(diǎn)P

1)求過(guò)點(diǎn)P且垂直于直線3x+4y150的直線l1的方程;(結(jié)果寫(xiě)成直線方程的一般式)

2)求過(guò)點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線l2方程(結(jié)果寫(xiě)成直線方程的一般式)

【答案】(1)4x3y10(2)直線l2的方程為x+y20xy0

【解析】

(1)首先聯(lián)立,求出,再設(shè)直線的方程為,代入即可.

(2)分別討論直線過(guò)原點(diǎn)和不過(guò)原點(diǎn)兩種情況,即可求出方程.

(1)聯(lián)立,

解得,所以.

設(shè)垂直于直線的直線的方程為

代入可得:,解得.

所以直線的方程為:.

(2)當(dāng)直線經(jīng)過(guò)原點(diǎn)時(shí),

可得方程為:.

當(dāng)直線不過(guò)原點(diǎn)時(shí),

可設(shè)方程為:,

代入可得,可得.

∴直線的方程為.

綜上可得:直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)M是棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的棱AD的中點(diǎn),點(diǎn)P在面BCC1B1所在的平面內(nèi),若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點(diǎn)P到點(diǎn)C1的最短距離是(

A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的普通方程為,曲線參數(shù)方程為為參數(shù));以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為,.

(1)求的參數(shù)方程和的直角坐標(biāo)方程;

(2)已知上參數(shù)對(duì)應(yīng)的點(diǎn),上的點(diǎn),求中點(diǎn)到直線的距離取得最小值時(shí),點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為且橢圓上存在一點(diǎn),滿足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知分別是橢圓的左、右頂點(diǎn),過(guò)的直線交橢圓兩點(diǎn),記直線的交點(diǎn)為,是否存在一條定直線,使點(diǎn)恒在直線上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為a的正方體ABCDA1B1C1D1中,PA1D1的中點(diǎn),QA1B1上任意一點(diǎn),EFCD上任意兩點(diǎn),且EF的長(zhǎng)為定值,則下面的四個(gè)值中不為定值的是(

A.點(diǎn)P到平面QEF的距離

B.直線PQ與平面PEF所成的角

C.三棱錐PQEF的體積

D.二面角PEFQ的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,設(shè)上的動(dòng)點(diǎn),點(diǎn)軸上的投影,動(dòng)點(diǎn)滿足,點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn),為直線上兩點(diǎn).

(1)求的參數(shù)方程;

(2)是否存在,使得的面積為8?若存在,有幾個(gè)這樣的點(diǎn)?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在中,,的中點(diǎn)為,點(diǎn)的延長(zhǎng)線上,且.固定邊,在平面內(nèi)移動(dòng)頂點(diǎn),使得圓分別與邊的延長(zhǎng)線相切,并始終與的延長(zhǎng)線相切于點(diǎn),記頂點(diǎn)的軌跡為曲線.以所在直線為軸,為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,如圖②所示.

(1)求曲線的方程;

(2)過(guò)點(diǎn)的直線與曲線交于不同的兩點(diǎn),,直線,分別交曲線于點(diǎn),,設(shè),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由無(wú)理數(shù)論引發(fā)的數(shù)字危機(jī)一直延續(xù)到19世紀(jì),直到1872年,德國(guó)數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來(lái)定義無(wú)理數(shù)(史稱戴德金分割),并把實(shí)數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無(wú)理數(shù)被認(rèn)為“無(wú)理”的時(shí)代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī),所謂戴德金分割,是指將有理數(shù)集劃分為兩個(gè)非空的子集,且滿足,中的每一個(gè)元素都小于中的每一個(gè)元素,則稱為戴德金分割.試判斷,對(duì)于任一戴德金分割,下列選項(xiàng)中,可能成立的是____

沒(méi)有最大元素,有一個(gè)最小元素;②沒(méi)有最大元素,也沒(méi)有最小元素;

有一個(gè)最大元素,有一個(gè)最小元素;④有一個(gè)最大元素,沒(méi)有最小元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.

(1)求橢圓的方程;

(2)已知定點(diǎn),是否存在過(guò)的直線,使與橢圓交于兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案