精英家教網 > 高中數學 > 題目詳情
“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯表:
男性 女性 合計
反感 10
不反感 8
合計 30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請將上面的列表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據此資料分析反感“中國式過馬路”與性別是否有關?(x2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,當Χ2<2.706時,沒有充分的證據判定變量性別有關,當Χ2>2.706時,有90%的把握判定變量性別有關,當Χ2>3.841時,有95%的把握判定變量性別有關,當Χ2>6.635時,有99%的把握判定變量性別有關)
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數為X,求X的分布列和數學期望.
分析:(I)根據在全部300人中隨機抽取1人抽到中國式過馬路的概率,做出中國式過馬路的人數,進而做出男生的人數,填好表格.再根據所給的公式,代入數據求出臨界值,把求得的結果同臨界值表進行比較,看出有多大的把握說明反感“中國式過馬路”與性別是否有關.
(II)反感“中國式過馬路”的人數為X的可能取值為0,1,2,通過列舉得到事件數,分別計算出它們的概率,最后利用列出分布列,求出期望即可.
解答:解(Ⅰ)
男性 女性 合計
反感 10 6 16
不反感 6 8 14
合計 16 14 30
由已知數據得:Χ2=
30(10×8-6×6)2
16×14×16×14
≈1.158<3.841
,
所以,沒有充足的理由認為反感“中國式過馬路”與性別有關.
(Ⅱ)X的可能取值為0,1,2.P(X=0)=
C
2
8
C
2
14
=
4
13
,P(X=1)=
C
1
6
C
1
8
C
2
14
=
48
91
P(X=2)=
C
2
6
C
2
14
=
15
91
,
所以X的分布列為:
X 0 1 2
P
4
13
48
91
15
91
X的數學期望為:EX=0×
4
13
+1×
48
91
+2×
15
91
=
6
7
點評:本題是一個統(tǒng)計綜合題,包含獨立性檢驗、離散型隨機變量的期望與方差和概率,本題通過創(chuàng)設情境激發(fā)學生學習數學的情感,幫助培養(yǎng)其嚴謹治學的態(tài)度.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯表:
男性 女性 合計
反感 10
6
6
16
16
不反感
6
6
8
14
14
合計
16
16
14
14
30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請將上面的列聯表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據此資料分析反感“中國式過馬路”與性別是否有關?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數為X,求X的分布列和數學期望.
提示:可參考試卷第一頁的公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯表:
男性 女性 合計
反感 10
不反感 8
合計 30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請將上面的列聯表補充完整(在答題卷上直接填寫結果,不需要寫求解過程),并據此資料判斷是否有95%的把握認為反感“中國式過馬路”與性別有關?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數為X,求X的分布列.
附:,其中

P(K2≥k0
0.15 0.10 0.05 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數學 來源:2014屆甘肅省高二下學期期末考試理科數學試卷(解析版) 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯表:

 

男性

女性

合計

反感

10

 

 

不反感

 

8

 

合計

 

 

30

已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是

(Ⅰ)請將上面的列聯表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據此資料分析反感“中國式過馬路 ”與性別是否有關?

(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數為X,求X的分布列和數學期望.

P(K2>k)

0.05

0.025

0.010

0.005

k

3.841

5.024

6.635

7.879

下面的臨界值表供參考:

(參考公式:K2=,其中n="a+b+c+d)"

 

查看答案和解析>>

科目:高中數學 來源:2014屆安徽省高二下學期期末質檢理科數學試卷(解析版) 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路 ”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯表:

 

男性

女性

合計

反感

10

 

不反感

8

 

合計

 

 

30

已知在這30人中隨機抽取1人抽到反感“中國式過馬路 ”的路人的概率是.

(Ⅰ)請將上面的2×2列聯表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據此資料分析反感“中國式過馬路 ”與性別是否有關?

(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數為X,求X的分布列和數學期望.

參考數據和公式:

2×2列聯表公式:,的臨界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

查看答案和解析>>

同步練習冊答案