【題目】業(yè)界稱中國芯迎來發(fā)展和投資元年,某芯片企業(yè)準備研發(fā)一款產(chǎn)品,研發(fā)啟動時投入資金為AA為常數(shù))元,之后每年會投入一筆研發(fā)資金,n年后總投入資金記為,經(jīng)計算發(fā)現(xiàn)當時,近似地滿足,其中,為常數(shù),.已知3年后總投入資金為研發(fā)啟動是投入資金的3倍,問:

1)研發(fā)啟動多少年后,總投入資金是研發(fā)啟動時投入資金的8倍;

2)研發(fā)啟動后第幾年投入的資金最多?

【答案】1)研發(fā)啟動9年后,總投入資金是研發(fā)啟動時投入資金的8倍;(2)研發(fā)啟動后第5年投入的資金最多.

【解析】

1)由求得,再由求出

2)先求出第年的投入資金,然后再求的最大值.

1)由題意,解得:,

(其中),

,得,,即,

∴研發(fā)啟動9年后,總投入資金是研發(fā)啟動時投入資金的8倍;

(2)由(1)

年的投入資金為:

,當且僅當,即時取等號,此時

∴研發(fā)啟動后第5年投入的資金最多.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形ABCDE,F分別為ABCD的中點,將△ADE沿DE折起,使△ACD為等邊三角形,如圖所示,記二面角A-DE-C的大小為.

1)證明:點A在平面BCDE內(nèi)的射影G在直線EF上;

2)求角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的上、下焦點分別為,,離心率為,點 在橢圓C上,延長交橢圓于N點.

1)求橢圓C的方程;

2PQ為橢圓上的點,記線段MN,PQ的中點分別為A,BAB異于原點O),且直線AB過原點O,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面邊長為,側(cè)棱長為的正四棱柱中,是側(cè)棱上的一點,.

1)若,求異面直線所成角的余弦;

2)是否存在實數(shù),使直線與平面所成角的正弦值是?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若點為點在平面上的正投影,則記.如圖,在棱長為的正方體中,記平面,平面,點是棱上一動點(與、不重合).給出下列三個結(jié)論:

①線段長度的取值范圍是;

②存在點使得平面

③存在點使得.

其中,所有正確結(jié)論的序號是( )

A.①②③B.②③C.①③D.①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間與極值;

2)當函數(shù)有兩個極值點時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的不等式(4kxk212k9)(2x11)>0,其中kR,對于不等式的解集A,記B=AZ(其中Z為整數(shù)集),若集合B是有限集,則使得集合B中元素個數(shù)最少時的實數(shù)k的取值范圍是__.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是_________(請把你認為正確說法的序號都填上).

1)函數(shù)的最小正周期為

2)若命題,使得,則,均有

3中,的充要條件;

4)已知點N所在平面內(nèi),且,則點N的重心;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)是函數(shù)的反函數(shù),解方程;

2)當時,定義,設,數(shù)列的前n項和為,求;

3)對于任意,其中,當能作為一個三角形的三邊長時,也總能作為一個三角形的三邊長,試探究M的最小值.

查看答案和解析>>

同步練習冊答案