【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線.(1)求曲線的普通方程;(2)若點(diǎn)在曲線上,點(diǎn) ,當(dāng)點(diǎn)在曲線上運(yùn)動(dòng)時(shí),求中點(diǎn)的軌跡方程.
【答案】(1) (2)
【解析】試題分析:(1)將參數(shù)方程轉(zhuǎn)化為直角坐標(biāo)系下的普通方程,需要根據(jù)參數(shù)方程的結(jié)構(gòu)特征,選取恰當(dāng)?shù)南麉⒎椒,常見的消參方法有:代入消參法、加減消參法、平方消參法;(2)將參數(shù)方程轉(zhuǎn)化為普通方程時(shí),要注意兩種方程的等價(jià)性,不要增解、漏解,若有范圍限制,要標(biāo)出的取值范圍;(3)直角坐標(biāo)方程化為極坐標(biāo)方程,只需把公式及直接代入并化簡即可;而極坐標(biāo)方程化為極坐標(biāo)方程要通過變形,構(gòu)造形如,,的形式,進(jìn)行整體代換,其中方程的兩邊同乘以(或同除以)及方程的兩邊平方是常用的變形方法.
試題解析:(1): ,
將 代入的普通方程得,即;
(2)設(shè) , 則
所以,即
代入,得,即
中點(diǎn)的軌跡方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣ x+c(a,c∈R)滿足條件:①f(1)=0;②對(duì)一切x∈R,都有f(x)≥0
(1)求a、c的值;
(2)若存在實(shí)數(shù)m,使函數(shù)g(x)=f(x)﹣mx在區(qū)間[m,m+2]上有最小值﹣5,求出實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞),f(x)是奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2﹣x+a,若函數(shù)g(x)=f(x)﹣x的零點(diǎn)恰有兩個(gè),則實(shí)數(shù)a的取值范圍是( )
A.a<0
B.a≤0
C.a≤1
D.a≤0或a=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點(diǎn),且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有大小相同的2個(gè)紅球和6個(gè)白球的袋子中,每摸出2個(gè)球?yàn)橐淮卧囼?yàn),直到摸出的球中有紅球(不放回),則試驗(yàn)結(jié)束.
(1)求第一次試驗(yàn)恰摸到一個(gè)紅球和一個(gè)白球概率;
(2)記試驗(yàn)次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是直線與函數(shù)圖像的兩個(gè)相鄰的交點(diǎn),且.
(1)求的值和函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位,得到函數(shù)的圖象,求函數(shù)的對(duì)稱軸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足條件(n﹣1)an+1=(n+1)(an﹣1),且a2=6,
(1)計(jì)算a1、a3、a4 , 請(qǐng)猜測(cè)數(shù)列{an}的通項(xiàng)公式并用數(shù)學(xué)歸納法證明;
(2)設(shè)bn=an+n(n∈N*),求 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com