【題目】總體由編號為01,02,...,39,40的40個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來的第5個(gè)個(gè)體的編號為( )
A.23B.21C.35D.32
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線圍成的各區(qū)域上分別且只能標(biāo)記數(shù)字1,2,3,4,相鄰區(qū)域標(biāo)記的數(shù)字不同,其中,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在圖上隨機(jī)取一點(diǎn),則該點(diǎn)恰好取自標(biāo)記為1的區(qū)域的概率所有可能值中,最大的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.回歸直線至少經(jīng)過其樣本數(shù)據(jù)中的一個(gè)點(diǎn)
B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時(shí),我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌
C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.將一組數(shù)據(jù)的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,其方差也要加上或減去這個(gè)常數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ當(dāng)時(shí),取得極值,求的值并判斷是極大值點(diǎn)還是極小值點(diǎn);
Ⅱ當(dāng)函數(shù)有兩個(gè)極值點(diǎn),,且時(shí),總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù);
(2)若f(x)有兩個(gè)極值點(diǎn)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若過點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為F1,F2,過點(diǎn)F1的直線與C交于A,B兩點(diǎn).△ABF2的周長為,且橢圓的離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)設(shè)點(diǎn)P為橢圓C的下頂點(diǎn),直線PA,PB與y=2分別交于點(diǎn)M,N,當(dāng)|MN|最小時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為2,平面.平面截此正方體所得的截面有以下四個(gè)結(jié)論:
①截面形狀可能是正三角形②截面的形狀可能是正方形
③截面形狀可能是正五邊形④截面面積最大值為
則正確結(jié)論的編號是( )
A.①④B.①③C.②③D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com