【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若且,求實數(shù)的取值范圍.
【答案】(1)見解析;(2).
【解析】
(1)求出函數(shù)的定義域和導(dǎo)數(shù),對實數(shù)進行分類討論,分析導(dǎo)數(shù)在上的符號變化,進而可得出函數(shù)在其定義域上的單調(diào)區(qū)間;
(2)由題意得不等式對任意的恒成立,構(gòu)造函數(shù),可得出,利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,求得函數(shù)的最大值,然后解不等式即可得出實數(shù)的取值范圍.
(1)函數(shù)的定義域是.
.
①當(dāng),即時,,此時,函數(shù)在上單調(diào)遞增;
②當(dāng),即時,
(i)若,則.
令,得;令,得,
此時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;
(ii)若,則,則,則.
則對任意恒成立,此時,函數(shù)在上單調(diào)遞減.
綜上所述,當(dāng)時,函數(shù)在上單調(diào)遞減;
當(dāng)時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時,函數(shù)在上單調(diào)遞增;
(2)等價于,即.
令,則.
,
①當(dāng)時,對任意的恒成立,符合題意;
②當(dāng)時,令,得或(負根舍去),
令,得;令,得,
所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
故,
因為,所以,令,則函數(shù)單調(diào)遞增.
又,故由得,得.
綜上,實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有6個球,紅藍兩色各半,從袋中不放回取球次,每次取1個球.
(1)求下列事件的概率:
①事件:,取出的球同色;
②事件:,第次恰好將紅球全部取出;
(2)若第次恰好取到第一個紅球,求抽取次數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知點,分別是橢圓的上頂點和左焦點,若與圓相切于點,且點是線段靠近點的三等分點.
求橢圓的標(biāo)準(zhǔn)方程;
直線與橢圓只有一個公共點,且點在第二象限,過坐標(biāo)原點且與垂直的直線與圓相交于,兩點,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C1的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=4sinθ.
(1)寫出圓C1的極坐標(biāo)方程,并求圓C1與圓C2的公共弦的長度d;
(2)設(shè)射線θ=與圓C1異于極點的交點為A,與圓C2異于極點的交點為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線的焦點,點在軸上,為坐標(biāo)原點,且滿足,經(jīng)過點且垂直于軸的直線與拋物線交于、兩點,且.
(1)求拋物線的方程;
(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機軟件研發(fā)公司為改進產(chǎn)品,對軟件用戶每天在線的時間進行調(diào)查,隨機抽取40名男性與20名女性對其每天在線的時間進行了調(diào)查統(tǒng)計,并繪制了如圖所示的條形圖,其中每天的在線時間4h以上(包括4h)的用戶被稱為“資深用戶”.
(1)根據(jù)上述樣本數(shù)據(jù),完成下面的2×2列聯(lián)表,并判定是否有95%的把握認為是否為“資深用戶”與性別有關(guān);
“資深用戶” | 非“資深用戶” | 總計 | |
男性 | |||
女性 | |||
總計 |
(2)用樣本估計總體,若從全體用戶中隨機抽取3人,設(shè)這3人中“資深用戶”的人數(shù)為X,求隨機變量X的分布列與數(shù)學(xué)期望.
附:,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.
(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;
(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;
(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表(如表)第1行的第4列和第5列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為( )
A.23B.21C.35D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,且,滿足條件的點的軌跡為曲線.
(1)求曲線的方程;
(2)是否存在過點的直線,直線與曲線相交于兩點,直線與軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com