設(shè)橢圓的左焦點(diǎn)為,離心率為,過(guò)點(diǎn)且與軸垂直的直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為
(1)求橢圓方程;
(2)過(guò)點(diǎn)的直線(xiàn)與橢圓交于不同的兩點(diǎn),當(dāng)面積最大時(shí),求
(1);(2).
解析試題分析:(1)由離心率和點(diǎn).用待定系數(shù)法求出橢圓的方程.(2)利用點(diǎn)到直線(xiàn)的距離公式求出高及弦長(zhǎng)公式求出弦長(zhǎng).分式形式的最值的求法要記牢.本題是對(duì)橢圓的基礎(chǔ)知識(shí)的測(cè)試.
試題解析:(1)由題意可得,,又,解得,
所以橢圓方程為
(2)根據(jù)題意可知,直線(xiàn)的斜率存在,故設(shè)直線(xiàn)的方程為,設(shè),由方程組消去得關(guān)于的方程
由直線(xiàn)與橢圓相交于兩點(diǎn),則有,即
得: 由根與系數(shù)的關(guān)系得
故 又因?yàn)樵c(diǎn)到直線(xiàn)的距離,故的面積
令則,所以當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
即時(shí),.
考點(diǎn):1.待定系數(shù)法求橢圓方程.2.點(diǎn)到直線(xiàn)的距離.3.弦長(zhǎng)公式.4.最值的求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)直線(xiàn)與雙曲線(xiàn)交于A、B,且以AB為直徑的圓過(guò)原點(diǎn),求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左右兩焦點(diǎn)分別為,是橢圓上一點(diǎn),且在軸上方,.
(1)求橢圓的離心率的取值范圍;
(2)當(dāng)取最大值時(shí),過(guò)的圓的截軸的線(xiàn)段長(zhǎng)為6,求橢圓的方程;
(3)在(2)的條件下,過(guò)橢圓右準(zhǔn)線(xiàn)上任一點(diǎn)引圓的兩條切線(xiàn),切點(diǎn)分別為.試探究直線(xiàn)是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn);否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知的頂點(diǎn)在橢圓上,在直線(xiàn)上,且.
(1)當(dāng)邊通過(guò)坐標(biāo)原點(diǎn)時(shí),求的長(zhǎng)及的面積;
(2)當(dāng),且斜邊的長(zhǎng)最大時(shí),求所在直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線(xiàn)過(guò)點(diǎn).
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)若拋物線(xiàn)與直線(xiàn)交于、兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),如果一個(gè)橢圓經(jīng)過(guò)點(diǎn)P(3,),且以點(diǎn)F(2,0)為它的一個(gè)焦點(diǎn).
(1)求此橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)中求過(guò)點(diǎn)F(2,0)的弦AB的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,斜率為的直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn),與拋物線(xiàn)交于兩點(diǎn)A、B, M為拋物線(xiàn)弧AB上的動(dòng)點(diǎn).
(Ⅰ)若,求拋物線(xiàn)的方程;
(Ⅱ)求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定點(diǎn)F(2,0)和定直線(xiàn),動(dòng)圓P過(guò)定點(diǎn)F與定直線(xiàn)相切,記動(dòng)圓圓心P的軌跡為曲線(xiàn)C
(1)求曲線(xiàn)C的方程.
(2)若以M(2,3)為圓心的圓與拋物線(xiàn)交于A、B不同兩點(diǎn),且線(xiàn)段AB是此圓的直徑時(shí),求直線(xiàn)AB的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)與雙曲線(xiàn)有公共焦點(diǎn),點(diǎn)是曲線(xiàn)在第一象限的交點(diǎn),且.
(1)求雙曲線(xiàn)的方程;
(2)以雙曲線(xiàn)的另一焦點(diǎn)為圓心的圓與直線(xiàn)相切,圓.過(guò)點(diǎn)作互相垂直且分別與圓、圓相交的直線(xiàn)和,設(shè)被圓截得的弦長(zhǎng)為,被圓截得的弦長(zhǎng)為,問(wèn):是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com