【題目】如圖1,四面體ABCD及其三視圖(如圖2所示),過棱AB的中點E作平行于AD,BC的平面分別交四面體的棱BD,DC,CA于點F,G,H.
(1)證明:四邊形EFGH是矩形;
(2)求直線AB與平面EFGH夾角θ的正弦值.
【答案】
(1)證明:由三視圖可知,四面體ABCD的底面BDC是以∠BDC為直角的等腰直角三角形,
且側(cè)棱AD⊥底面BDC.
如圖,
∵AD∥平面EFGH,平面ADB∩平面EFGH=EF,AD平面ABD,
∴AD∥EF.
∵AD∥平面EFGH,平面ADC∩平面EFGH=GH,AD平面ADC,
∴AD∥GH.
由平行公理可得EF∥GH.
∵BC∥平面EFGH,平面DBC∩平面EFGH=FG,BC平面BDC,
∴BC∥FG.
∵BC∥平面EFGH,平面ABC∩平面EFGH=EH,BC平面ABC,
∴BC∥EH.
由平行公理可得FG∥EH.
∴四邊形EFGH為平行四邊形.
又AD⊥平面BDC,BC平面BDC,
∴AD⊥BC,則EF⊥EH.
∴四邊形EFGH是矩形;
(2)解:
解法一:取AD的中點M,連結(jié),顯然ME∥BD,MH∥CD,MF∥AB,且ME=MH=1,平面MEH⊥平面EFGH,取EH的中點N,連結(jié)MN,則MN⊥EH,
∴MN⊥平面EFGH,則∠MFN就是MF(即AB)與平面EFGH所成的角θ,
∵△MEH是等腰直角三角形,
∴MN= ,又MF= AB= ,
∴sin∠AFN= = ,即直線AB與平面EFGH夾角θ的正弦值是 .
解法二:分別以DB,DC,DA所在直線為x,y,z軸建立空間直角坐標系,
由三視圖可知DB=DC=2,DA=1.
又E為AB中點,
∴F,G分別為DB,DC中點.
∴A(0,0,1),B(2,0,0),F(xiàn)(1,0,0),E(1,0, ),G(0,1,0).
則 .
設平面EFGH的一個法向量為 .
由 ,得 ,取y=1,得x=1.
∴ .
則sinθ=|cos< >|= = = .
【解析】(1)由三視圖得到四面體ABCD的具體形狀,然后利用線面平行的性質(zhì)得到四邊形EFGH的兩組對邊平行,即可得四邊形為平行四邊形,再由線面垂直的判斷和性質(zhì)得到AD⊥BC,結(jié)合異面直線所成角的概念得到EF⊥EH,從而證得結(jié)論;(2)分別以DB,DC,DA所在直線為x,y,z軸建立空間直角坐標系,求出所用點的坐標,求出 及平面EFGH的一個法向量 ,用 與 所成角的余弦值的絕對值得直線AB與平面EFGH夾角θ的正弦值.
【考點精析】解答此題的關鍵在于理解空間中直線與直線之間的位置關系的相關知識,掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點,以及對空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與拋物線相交于不同的兩點.
(1)如果直線過拋物線的焦點,求的值;
(2)如果 ,證明:直線必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)產(chǎn)品件的總成本(萬元).已知產(chǎn)品單價(萬元)與產(chǎn)品件數(shù)滿足,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元.
(1)設產(chǎn)量為件時,總利潤為(萬元),求的解析式;
(2)產(chǎn)量定為多少時總利潤(萬元)最大?并求最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為4,直線被橢圓截得的線段長為.
(1)求橢圓的標準方程;
(2)過橢圓的右頂點作互相垂直的兩條直線分別交橢圓于兩點(點不同于橢圓的右頂點),證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知矩形ABCD的邊AB=2,BC=1,以A為坐標原點,AB,AD邊分別在x軸、y軸的正半軸上,建立直角坐標系。將矩形折疊,使A點落在線段DC上,重新記為點
(1)當點坐標為(1,1)時,求折痕所在直線方程.
(2)若折痕所在直線的斜率為k,試求折痕所在直線的方程;
(3)當時,設折痕所在直線與軸交于點E,與軸交于點F,將沿折痕EF旋轉(zhuǎn).使二面角的大小為,設三棱錐的外接球表面積為,試求最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的公差為2,前n項和為Sn , 且S1 , S2 , S4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(﹣1)n﹣1 ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com