【題目】在平面直角坐標系中,直線與拋物線相交于不同的兩點.

(1)如果直線過拋物線的焦點,求的值;

(2)如果 ,證明:直線必過一定點,并求出該定點.

【答案】(1) .

(2)證明見解析; .

【解析】試題分析:解決直線和拋物線的綜合問題時注意:第一步:根據(jù)題意設(shè)直線方程,有的題設(shè)條件已知點,而斜率未知;有的題設(shè)條件已知斜率,點不定,可由點斜式設(shè)直線方程.第二步:聯(lián)立方程:把所設(shè)直線方程與拋物線的方程聯(lián)立,消去一個元,得到一個一元二次方程.第三步:求解判別式:計算一元二次方程根.第四步:寫出根與系數(shù)的關(guān)系.第五步:根據(jù)題設(shè)條件求解問題中結(jié)論.

試題解析:(1)由題意:拋物線焦點為(1,0),設(shè)lxty1,代入拋物線y24x,消去xy24ty40,設(shè)A(x1,y1),B(x2y2),則y1y24ty1y2=-4,

·x1x2y1y2(ty11)(ty21)y1y2t2y1y2t(y1y2)1y1y2=-4t24t214=-3. ----6

(2)設(shè)lxtyb代入拋物線y24x,消去xy24ty4b0,設(shè)A(x1,y1),B(x2,y2),

y1y24t,y1y2=-4b,

·x1x2y1y2(ty1b)(ty2b)y1y2t2y1y2bt(y1y2)b2y1y2=-4bt24bt2b24bb24b.b24b=-4,b24b40,b2,直線l過定點(2,0)·=-4,則直線l必過一定點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知全集U={2,4,a2a+1},A={a+4,4},UA={7},則a________.

(2)a>0a≠1時,函數(shù)必過定點_______

(3)為了保證信息安全,傳輸必須使用加密方式,有一種方式其加密、解密原理如下:

明文密文密文明文

己知加密為yax-2(x為明文、y為密文),如果明文“3”通過加密后得到密文為“6”,再發(fā)送,接收方通過解密得到明文“3”,若接收方接到密文為“14”,則原發(fā)的明文是________

(4)已知3a=5b=M,且,則M的值為______________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 在x=1處取得極值.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當x∈[1,+∞)時,f(x)≥ 恒成立,求實數(shù)m的取值范圍;
(3)當n∈N* , n≥2時,求證:nf(n)<2+ + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)個質(zhì)數(shù)構(gòu)成公差為的等差數(shù)列,且.求證

(1)是質(zhì)數(shù)時,

(2)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù).

(Ⅰ)求的值;

(Ⅱ)判斷在定義域上的單調(diào)性并加以證明;

(Ⅲ)若對于任意的,不等式恒成立, 求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一錐體的三視圖如圖所示,則該棱錐的最長棱的棱長為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和最小值;

(2)若函數(shù)上的最小值為,求的值;

(3)若,且對任意恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間之間的相關(guān)關(guān)系,某重點高中數(shù)學(xué)教師對新入學(xué)的45名學(xué)生進行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績不足120分的占 ,統(tǒng)計成績后,得到如下的2×2列聯(lián)表:

分數(shù)大于等于120分

分數(shù)不足120分

合計

周做題時間不少于15小時

4

19

周做題時間不足15小時

合計

45

(Ⅰ)請完成上面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”;
(Ⅱ)( i)按照分層抽樣的方法,在上述樣本中,從分數(shù)大于等于120分和分數(shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時間不足15小時的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
( ii)若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
附:

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案