【題目】某文體局為了解“跑團(tuán)”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團(tuán)”每月跑步的平均里程(單位:公里)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)折線圖,下列結(jié)論正確的是( )

A. 月跑步平均里程的中位數(shù)為6月份對(duì)應(yīng)的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相對(duì)于6月至11月,波動(dòng)性更小,變化比較平穩(wěn)

【答案】D

【解析】

根據(jù)折線圖中11個(gè)月的數(shù)據(jù)分布,數(shù)據(jù)從小到大排列中間的數(shù)可得中位數(shù),根據(jù)數(shù)據(jù)的增長(zhǎng)趨勢(shì)可判斷BCD.

由折線圖知,月跑步平均里程的中位數(shù)為5月份對(duì)應(yīng)的里程數(shù);月跑步平均里程不是逐月增加的;月跑步平均里程高峰期大致在9,l0月份,故A,BC錯(cuò).本題選擇D選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,,MAB的中點(diǎn),NCE的中點(diǎn).

(1)求證:;

(2)求證:平面ADE;

(3)求點(diǎn)A到平面BCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)的圖象向右平移一個(gè)單位,所得圖象與函數(shù)的圖象關(guān)于直線對(duì)稱(chēng);已知偶函數(shù)滿(mǎn)足,當(dāng)時(shí),;若函數(shù)有五個(gè)零點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中, 分別為, 的中點(diǎn),的中點(diǎn),.沿折起到的位置,使得平面平面,如圖2.

1)求證:;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市有兩家大型石油煉化廠,這兩家石油煉化廠所生產(chǎn)的成品油都要通過(guò)甲、乙兩條輸油管道輸送到各地進(jìn)行銷(xiāo)售.由于地理位置及兩家石油煉化廠的生產(chǎn)能力的不同,石油煉化廠生產(chǎn)的成品油通過(guò)甲、乙兩條輸油管道輸送時(shí)每噸的運(yùn)費(fèi)分別為1元和1.6元,石油煉化廠生產(chǎn)的成品油通過(guò)甲、乙兩條輸油管道輸送時(shí)每噸的運(yùn)費(fèi)分別為0.8元和1.5.甲輸油管道每年最多能輸送290萬(wàn)噸成品油,乙輸油管道每年最多能輸送320萬(wàn)噸成品油.石油煉化廠每年生產(chǎn)180萬(wàn)噸成品油,石油煉化廠每年生產(chǎn)240萬(wàn)噸成品油.規(guī)定石油煉化廠通過(guò)甲輸油管道輸送的成品油與石油煉化廠通過(guò)甲輸油管道輸送的成品油的二倍之和不超過(guò)490萬(wàn)噸.問(wèn):兩家煉化廠采用什么樣的輸油方案,能使總的運(yùn)費(fèi)最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn),,直線相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。

(1)求曲線的方程;

(2)過(guò)點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線斜率之積為定值,若存在,求出坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右頂點(diǎn)分別為,,上頂點(diǎn)為B,右焦點(diǎn)為F,已知直線的傾斜角為120°.

(1)求橢圓C的方程;

(2)設(shè)P為橢圓C上不同于,的一點(diǎn),O為坐標(biāo)原點(diǎn),線段的垂直平分線交M點(diǎn),過(guò)M且垂直于的直線交y軸于Q點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面四邊形中,,,.

1)求和四邊形的面積;

2)若EBD的中點(diǎn),求CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,

.

(1)證明: ;

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案