【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,,MAB的中點,NCE的中點.

(1)求證:;

(2)求證:平面ADE;

(3)求點A到平面BCE的距離.

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】

(1)推導出,從而平面,由此能證明;(2)取的中點,連接,推導出四邊形是平行四邊形,從而,由此能證明平面;(3)設點到平面的距離為,,能求出點到平面的距離.

證明:(1),MAB的中點,

,

平面平面ABCD,,平面平面,平面ABE,

平面ABCD,,

平面ABCD,

;

(2)取DE的中點F,連接AF,NF,

CE的中點,

,

AB的中點,

,

,

四邊形AMNF是平行四邊形,

,

平面ADE,平面ADE,

平面ADE;

(3)設點到平面BCE的距離為,

由(1)知平面ABC,,,

,,

,

,

,

,

解得,故點A到平面BCE的距離為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中隨機抽取了200人進行抽樣分析,得到下表(單位:人):

經常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據以上數(shù)據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?

(2)現(xiàn)從所有抽取的30歲以上的網民中利用分層抽樣抽取5人,

求這5人中經常使用、偶爾或不用共享單車的人數(shù);

從這5人中,在隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.

參考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若存在,使得,則a的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某單位甲、乙、丙三個部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進行睡眠時間的調查.

1)應從甲、乙、丙三個部門的員工中分別抽取多少人?

2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機抽取3人做進一步的身體檢查.用X表示抽取的3人中睡眠充足的員工人數(shù),求隨機變量X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)若上單調遞増,求實數(shù)的取值范圍;

2)若不等式對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1)若處有極值,求的單調遞增區(qū)間;

2)是否存在實數(shù),使在區(qū)間上的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,經過伸縮變換后,曲線變?yōu)榍,過點且傾斜角為的直線交于不同的兩點.

1)求曲線的普通方程;

2)求的中點的軌跡的參數(shù)方程(以為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著“互聯(lián)網+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運營公司為了解某地區(qū)用戶對該公司所提供的服務的滿意度,隨機調查了100名用戶,得到用戶的滿意度評分(滿分10分),現(xiàn)將評分分為5組,如下表:

組別

滿意度評分

[0,2)

[2,4)

[4,6)

[6,8)

[8,10]

頻數(shù)

5

10

a

32

16

頻率

0.05

b

0.37

c

0.16

(1)求表格中的a,b,c的值;

(2)估計用戶的滿意度評分的平均數(shù);

(3)若從這100名用戶中隨機抽取25人,估計滿意度評分低于6分的人數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某文體局為了解“跑團”每月跑步的平均里程,收集并整理了2018年1月至2018年11月期間“跑團”每月跑步的平均里程(單位:公里)的數(shù)據,繪制了下面的折線圖.根據折線圖,下列結論正確的是( )

A. 月跑步平均里程的中位數(shù)為6月份對應的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在8、9月

D. 1月至5月的月跑步平均里程相對于6月至11月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

同步練習冊答案