中,角A,B,C所對的邊分別為.
(Ⅰ)敘述并證明正弦定理;
(Ⅱ)設(shè),求的值.

(Ⅰ)證明見解析;(Ⅱ) .

解析試題分析:(Ⅰ)正弦定理:,利用三角形的外接圓證明正弦定理. 設(shè)的外接圓的半徑為,連接并延長交圓于點(diǎn),則,直徑所對的圓周角,在直角三角形中,,從而得到,同理可證,則正弦定理得證;(Ⅱ)先由正弦定理將化為①,再依據(jù)和差化積公式,同角三角函數(shù)間的關(guān)系,特殊角的三角函數(shù)值將①式化簡,得到,則,再由二倍角公式求解.
試題解析:(Ⅰ)正弦定理:.
證明:設(shè)的外接圓的半徑為,連接并延長交圓于點(diǎn),如圖所示:

,,在中,,即,則有,同理可得,,所以.
(Ⅱ)∵,由正弦定理得,,
,
,
,,
解得,,
.
考點(diǎn):1.正弦定理;2.解三角形;3.同角三角函數(shù)間的關(guān)系;4.和差化積公式;5.二倍角公式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中),滿足.
(Ⅰ)求函數(shù)的最小正周期的值;
(Ⅱ)當(dāng)時,求函數(shù)的最小值,并且求使函數(shù)取得最小值的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(Ⅰ)求的單調(diào)增區(qū)間;(Ⅱ)當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,函數(shù)的最大值為6.
(Ⅰ)求;
(Ⅱ)將函數(shù)的圖象向左平移個單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖象.求上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為坐標(biāo)原點(diǎn),,.
(Ⅰ)若的定義域為,求的單調(diào)遞增區(qū)間;
(Ⅱ)若的定義域為,值域為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,
(Ⅰ)若,求的值;
(Ⅱ)在中,角的對邊分別是,且滿足,求函數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,設(shè)函數(shù)
(1)若,f(x)=,求的值;
(2)在△ABC中,角A,B,C的對邊分別是,且滿足,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的部分圖像如圖所示.

(1)求函數(shù)的解析式;
(2)若,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=x2+ax().
(1)若函數(shù)y=f(sinx+cosx)()的最大值為,求f(x)的最小值;
(2)當(dāng)a>2時,求證:f(sin2xlog2sin2x+cos2xlog2cos2x)1–a.其中x∈R,x¹kp且x¹kp(k∈Z).

查看答案和解析>>

同步練習(xí)冊答案