已知變量x,y滿(mǎn)足約束條件
x+y-5≤0
x-2y+1≤0
x-1≥0
,則z=x+2y-1的最大值(  )
A、9B、8C、7D、6
考點(diǎn):簡(jiǎn)單線(xiàn)性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=x+2y-1得y=-
1
2
x+
z+1
2
,
平移直線(xiàn)y=-
1
2
x+
z+1
2
,由圖象可知當(dāng)直線(xiàn)y=-
1
2
x+
z+1
2
經(jīng)過(guò)點(diǎn)A時(shí),
直線(xiàn)y=-
1
2
x+
z+1
2
的截距最大,此時(shí)z最大,
x=1
x+y-5=0
,得
x=1
y=4
,即A(1,4)
此時(shí)z=1+8-1=8,
故選:B.
點(diǎn)評(píng):本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用z的幾何意義,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>b,且ab=1,則
a2+b2
a-b
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法:
(1)回歸直線(xiàn) 
y
=-2x+5,則x每增加1個(gè)單位,y減少2個(gè)單位;
(2)已知-1<x+y<4且2<x-y<3,則2x-3y的取值范圍是(3,8);
(3)函數(shù)f(x)=loga(x-1)+1的圖象過(guò)的定點(diǎn)A在直線(xiàn)mx-y+n=0上,則4m+2n的最小值是2
2
;
(4)不等式
2x-2
x2+3x+5
≤a在x>1時(shí)恒成立,則a≥
5
12

其中正確的說(shuō)法序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班的5名同學(xué)代表班級(jí)參加學(xué)校組織的知識(shí)競(jìng)賽,在競(jìng)賽過(guò)程中,每人依次回答問(wèn)題,為更好的發(fā)揮5人的整體水平,其中A同學(xué)只能在第一或最后一個(gè)答題,B和C同學(xué)則必須相鄰順序答題,則不同的答題順序編排方法的種數(shù)為
 
(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)的函數(shù)滿(mǎn)足f(x+4)=x3+2,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n∈R,若直線(xiàn)(m-1)x+(n-1)y+2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是( 。
A、[-2-2
2
,-2+2
2
]
B、[2-2
2
,2+2
2
]
C、(-∞,-2-2
2
]∪[-2+2
2
,+∞)
D、(-∞,2-2
2
]∪[2+2
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿(mǎn)足約束條件
y≤x
x+y≥2
x≤2
,則z=2x+y的最大值為(  )
A、3B、4C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

實(shí)驗(yàn)測(cè)得四組(x,y)的值是(1,2),(2,4),(3,4),(4,5),(5,5),若線(xiàn)性回歸方程是
y
=0.7x+
a
.則
a
的值是( 。
A、1.9B、1.4
C、2.6D、2.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={(x,y)|y=x2+mx+2},B={(x,y)|y=x+1,x>0},若A∩B≠∅,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案