【題目】我們?yōu)榱颂骄亢瘮?shù)的部分性質(zhì),先列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.004

4.02

4.04

4.3

5

5.8

7.57

觀察表中值隨值變化的特點(diǎn),完成以下的問題.

首先比較容易看得出來:此函數(shù)在區(qū)間上是遞減的;

(1)函數(shù)在區(qū)間 上遞增

當(dāng) 時(shí),= .

(2)請你根據(jù)上面性質(zhì)作出此函數(shù)的大概圖像;

(3)試用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上為減函數(shù).

【答案】(1),2, 4;(2)見解析;(3)見解析

【解析】

(1)由表格的數(shù)據(jù)可知區(qū)間上遞減,區(qū)間上遞增,.當(dāng)時(shí),有最小值4

(2)根據(jù)表格,在坐標(biāo)系中標(biāo)出點(diǎn)的位置,用平滑的曲線連接。

(3)根據(jù)單調(diào)性的定義證明任取,且,

,,又,,

得出

(1)函數(shù)在區(qū)間上遞增.當(dāng) 2 時(shí),= 4

(2)

(3)證明:任取,且

,,又,

,所以

所以函數(shù)在區(qū)間(0,2)上是單調(diào)遞減的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知橢圓的離心率為,左右焦點(diǎn)分別為,以點(diǎn)為圓心,以為半徑的圓與以點(diǎn)為圓心,以為半徑的圓相交,且交點(diǎn)在橢圓上.

)求橢圓的方程.

)設(shè)橢圓, 為橢圓上任意一點(diǎn),過點(diǎn)的直線交橢圓、兩點(diǎn),射線交橢圓于點(diǎn)

①求的值.

②(理科生做)求面積的最大值.

③(文科生做)當(dāng)時(shí), 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 。

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)若函數(shù)處有極小值,求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]時(shí)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱BB1、CC1上,且BE= BB1 , C1F= CC1

(1)求平面AEF與平面ABC所成角α的余弦值;
(2)若G為BC的中點(diǎn),A1G與平面AEF交于H,且設(shè) = ,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個(gè)作為樣本,稱出它們的重量單位:克,重量分組區(qū)間為,,,,由此得到樣本的重量頻率分布直方圖如圖

1)求的值,并根據(jù)樣本數(shù)據(jù),試估計(jì)盒子中小球重量的眾數(shù)與平均值;

2)從盒子中隨機(jī)抽取3個(gè)小球,其中重量內(nèi)的小球個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

【答案】C

【解析】,

,

∴函數(shù)的單調(diào)減區(qū)間為,

又函數(shù)在區(qū)間上單調(diào)遞減,

,

解得,

實(shí)數(shù)的取值范圍是C.

點(diǎn)睛已知函數(shù)在區(qū)間上的單調(diào)性求參數(shù)的方法

(1)利用導(dǎo)數(shù)求解,轉(zhuǎn)化為導(dǎo)函數(shù)在該區(qū)間上大于等于零(或小于等于零)恒成立的問題求解,一般通過分離參數(shù)化為求函數(shù)的最值的問題

(2)先求出已知函數(shù)的單調(diào)區(qū)間,然后將問題轉(zhuǎn)化為所給的區(qū)間是函數(shù)相應(yīng)的單調(diào)區(qū)間的子集的問題處理

型】單選題
結(jié)束】
7

【題目】設(shè),函數(shù)的圖象向右平移個(gè)單位長度后與原圖象重合,則的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

已知函數(shù),.

)求的定義域;

)判斷的奇偶性并予以證明;

)當(dāng)時(shí),求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中不正確的序號為_______

①若函數(shù)上單調(diào)遞減,則實(shí)數(shù)的取值范圍是;

②函數(shù)是偶函數(shù),但不是奇函數(shù);

③已知函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域是;

④若函數(shù)上有最小值-4,(,為非零常數(shù)),則函數(shù)上有最大值6.

查看答案和解析>>

同步練習(xí)冊答案