點(diǎn)P在直線l:y=x-1上,若存在過P的直線交拋物線y=x2于A,B兩點(diǎn),且|PA|=|AB|,則稱點(diǎn)P為“δ點(diǎn)”,那么下列結(jié)論中正確的是

[  ]
A.

直線l上的所有點(diǎn)都是“δ點(diǎn)”

B.

直線l上僅有有限個(gè)點(diǎn)是“δ點(diǎn)”

C.

直線l上的所有點(diǎn)都不是“δ點(diǎn)”

D.

直線l上有無窮多個(gè)點(diǎn)(不是所有的點(diǎn))是“δ點(diǎn)”

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)理科(北京卷) 題型:013

點(diǎn)P在直線lyx1上,若存在過P的直線交拋物線yx2A,B兩點(diǎn),且|PA|AB,則稱點(diǎn)P為“點(diǎn)”,那么下列結(jié)論中正確的是

[  ]
A.

直線l上的所有點(diǎn)都是“點(diǎn)”

B.

直線l上僅有有限個(gè)點(diǎn)是“點(diǎn)”

C.

直線l上的所有點(diǎn)都不是“點(diǎn)”

D.

直線l上有無窮多個(gè)點(diǎn)(點(diǎn)不是所有的點(diǎn))是“點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省淮南市二中2012屆高三第三次月考數(shù)學(xué)理科試題 題型:044

(1)如圖,D是Rt△ABC的斜邊AB上的中點(diǎn),E和F分別在邊AC和BC上,且ED⊥FD,求證:EF2=AE2+BF2(EF2表示線段EF長度的平方)(嘗試用向量法證明)

(2)已知函數(shù)f(x)=x3-3x圖像上一點(diǎn)P(1,-2),過點(diǎn)P作直線l與y=f(x)圖像相切,但切點(diǎn)異于點(diǎn)P,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北武漢市高三2月調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,矩形ABCD中,|AB|2,|BC|2E,FG,H分別矩形四條邊的中點(diǎn),分別以HFEG所在直線為x軸,y軸建立平面直角坐標(biāo)系,已知λ,λ,其中0λ1

1)求證:直線ERGR′的交點(diǎn)M在橢圓Γy21上;

2點(diǎn)N直線lyx2上且不在坐標(biāo)軸上的任意一點(diǎn),F1、F2分別為橢圓Γ的左、右焦點(diǎn),直線NF1NF2與橢圓Γ的交點(diǎn)分別為P、QST是否存在點(diǎn)N,使直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOPkOQkOSkOT0?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省、金陵中學(xué)、南京外國語學(xué)校高三三校聯(lián)考數(shù)學(xué)卷 題型:解答題

A.選修4-1:幾何證明選講

 

 
(本小題滿分10分)

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點(diǎn),AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD.求證:(1)l是⊙O的切線;(2)PB平分∠ABD.

B.選修4-2:矩陣與變換

(本小題滿分10分)

已知點(diǎn)A在變換:T:→=作用后,再繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到點(diǎn)B.若點(diǎn)B坐標(biāo)為(-3,4),求點(diǎn)A的坐標(biāo).

C.選修4-4:坐標(biāo)系與參數(shù)方程

(本小題滿分10分)

求曲線C1:被直線l:y=x-所截得的線段長.

D.選修4-5:不等式選講

(本小題滿分10分)

已知a、b、c是正實(shí)數(shù),求證:≥.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案