A.選修4-1:幾何證明選講

 

 
(本小題滿分10分)

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點(diǎn),AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD.求證:(1)l是⊙O的切線;(2)PB平分∠ABD.

B.選修4-2:矩陣與變換

(本小題滿分10分)

已知點(diǎn)A在變換:T:→=作用后,再繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到點(diǎn)B.若點(diǎn)B坐標(biāo)為(-3,4),求點(diǎn)A的坐標(biāo).

C.選修4-4:坐標(biāo)系與參數(shù)方程

(本小題滿分10分)

求曲線C1:被直線l:y=x-所截得的線段長(zhǎng).

D.選修4-5:不等式選講

(本小題滿分10分)

已知a、b、c是正實(shí)數(shù),求證:≥.

 

 

【答案】

【解析】21-A:證明:(1)連結(jié)OP,

∵AC⊥l,BD⊥l,∴AC∥BD.

又OA=OB,PC=PD,

∴OP∥BD,從而OP⊥l.

∵P在⊙O上,∴l(xiāng)是⊙O的切線.                     ……………………6分

(2)連結(jié)AP,

∵l是⊙O的切線,∴∠BPD=∠BAP.

又∠BPD+∠PBD=90o,∠BAP+∠PBA=90o,

∴∠PBA=∠PBD,即PB平分∠ABD.                ……………………10分

21-B:解: =.                 ……………………6分

設(shè)A(a,b),則由 =,得

∴即A(-2,3).                          ……………………10分

21-C:解:C1:.得t=,代入①,化簡(jiǎn)得x2+y2=2x.

又x=≠0,∴C1的普通方程為(x-1)2+y2=1(x≠0).……………………6分

圓C1的圓心到直線l:y=x-的距離d==.

所求弦長(zhǎng)=2=.                         ……………………10分

21-D:證明:由≥0,得

2()-2()≥0,∴≥.……………………10分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省江寧分校高二下學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

A. [選修4-1:幾何證明選講](本小題滿分10分)

如圖,AB是⊙O的直徑,C是⊙O外一點(diǎn),且AC=AB,BC交⊙O于點(diǎn)D.

已知BC=4,AD=6,AC交⊙O于點(diǎn)E,求四邊形ABDE的周長(zhǎng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省姜堰市高三第一學(xué)期學(xué)情調(diào)研數(shù)學(xué)試卷 題型:解答題

(本試卷共40分,考試時(shí)間30分鐘)

21.(選做題)本大題包括A,B,C,D共4小題,請(qǐng)從這4題中選做2小題. 每小題10分,共20分.請(qǐng)?jiān)诖痤}卡上準(zhǔn)確填涂題目標(biāo)記. 解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是邊長(zhǎng)為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點(diǎn),延長(zhǎng)

   (1)求證:的中點(diǎn);(2)求線段的長(zhǎng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省姜堰市二中學(xué)高三學(xué)情調(diào)查數(shù)學(xué)試卷 題型:解答題

(選做題)本大題包括A,B,C,D共4小題,請(qǐng)從這4題中選做2小題. 每小題10分,共20分.請(qǐng)?jiān)诖痤}卡上準(zhǔn)確填涂題目標(biāo)記. 解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是邊長(zhǎng)為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點(diǎn),延長(zhǎng)

   (1)求證:的中點(diǎn);(2)求線段的長(zhǎng).

B.選修4-2:矩陣與變換

已知矩陣A,其中,若點(diǎn)在矩陣A的變換下得到

   (1)求實(shí)數(shù)的值;

   (2)矩陣A的特征值和特征向量.

 

C. 選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,圓的極坐標(biāo)方程為,

(1)過(guò)極點(diǎn)的一條直線與圓相交于,A兩點(diǎn),且∠,求的長(zhǎng).

(2)求過(guò)圓上一點(diǎn),且與圓相切的直線的極坐標(biāo)方程;

 

D.選修4-5:不等式選講

已知實(shí)數(shù)滿足,求的最小值;

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省姜堰市高三學(xué)情調(diào)查數(shù)學(xué)試卷 題型:解答題

(選做題)本大題包括A,B,C,D共4小題,請(qǐng)從這4題中選做2小題. 每小題10分,共20分.請(qǐng)?jiān)诖痤}卡上準(zhǔn)確填涂題目標(biāo)記. 解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是邊長(zhǎng)為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點(diǎn),延長(zhǎng)

   (1)求證:的中點(diǎn);(2)求線段的長(zhǎng).

B.選修4-2:矩陣與變換

已知矩陣A,其中,若點(diǎn)在矩陣A的變換下得到

   (1)求實(shí)數(shù)的值;

   (2)矩陣A的特征值和特征向量.

 

C. 選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,圓的極坐標(biāo)方程為,

(1)過(guò)極點(diǎn)的一條直線與圓相交于,A兩點(diǎn),且∠,求的長(zhǎng).

(2)求過(guò)圓上一點(diǎn),且與圓相切的直線的極坐標(biāo)方程;

 

D.選修4-5:不等式選講

已知實(shí)數(shù)滿足,求的最小值;

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案