如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標(biāo)系,已知=λ,=λ,其中0<λ<1.
(1)求證:直線ER與GR′的交點M在橢圓Γ:+y2=1上;
(2)若點N是直線l:y=x+2上且不在坐標(biāo)軸上的任意一點,F1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標(biāo);若不存在,請說明理由.
(1)見解析(2)滿足條件的點N存在,其坐標(biāo)為
【解析】
試題分析:根據(jù)條件,可用參數(shù)表示點的坐標(biāo),兩點式寫出直線的方程,并求出它們的交點的坐標(biāo),消去參數(shù)即可得證.(2)假設(shè)存在點在直線上,使,
設(shè), ,, , 直線的斜率為,直線的斜率為 ,可寫出兩直線的方程,并分別與橢圓方程聯(lián)立組成方程級,利用一元二次方程根與系數(shù)的關(guān)系,結(jié)合條件探究與的關(guān)系,從而確定關(guān)于的方程的根的存在性,也就是點的存在性.
試題解析:(1)由已知,得F(,0),C(,1).
由=λ,=λ,得R(λ,0),R′(,1-λ).
又E(0,-1),G(0,1),則
直線ER的方程為y=x-1, ①
直線GR′的方程為y=-x+1. ②
由①②,得M(,).
∵+()2===1,
∴直線ER與GR′的交點M在橢圓Γ:+y2=1上. 5分
(2)假設(shè)滿足條件的點N(x0,y0)存在,則
直線NF1的方程為y=k1(x+1),其中k1=,
直線NF2的方程為y=k2(x-1),其中k2=.
由消去y并化簡,得(2k12+1)x2+4k12x+2k12-2=0.
設(shè)P(x1,y1),Q(x2,y2),則x1+x2=-,x1x2=.
∵OP,OQ的斜率存在,∴x1≠0,x2≠0,∴k12≠1.
∴kOP+kOQ=+=+=2k1+k1·=k1(2-)=-.
同理可得kOS+kOT=-.
∴kOP+kOQ+kOS+kOT=-2(+)=-2·=-.
∵kOP+kOQ+kOS+kOT=0,∴-=0,即(k1+k2)(k1k2-1)=0.
由點N不在坐標(biāo)軸上,知k1+k2≠0,
∴k1k2=1,即·=1. ③
又y0=x0+2, ④
解③④,得x0=-,y0=.
故滿足條件的點N存在,其坐標(biāo)為(-,). 13分
考點:1、動點軌跡方程的求法;2、直線與橢圓的位置關(guān)系的應(yīng)用;3、平面向量的坐標(biāo)表示.
科目:高中數(shù)學(xué) 來源: 題型:
8
| ||
3 |
2π |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AE |
AF |
9 |
2 |
9 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2
| ||||
12 |
2
| ||||
12 |
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
PQ |
QD |
BP |
QD |
| ||
10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com