7.直線$\sqrt{3}$x+y-1=0的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 設(shè)直線$\sqrt{3}$x+y-1=0的傾斜角為θ.由直線$\sqrt{3}$x+y-1=0化為y=-$\sqrt{3}$x+1,可得tanθ=-$\sqrt{3}$,即可得出.

解答 解:設(shè)直線$\sqrt{3}$x+y-1=0的傾斜角為θ.
由直線$\sqrt{3}$x+y-1=0化為y=-$\sqrt{3}$x+1,
∴tanθ=-$\sqrt{3}$,
∵θ∈[0,π),∴θ=$\frac{2π}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查了直線的斜率與傾斜角的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若復(fù)數(shù)z=$\frac{a-i}{1-i}$(a∈R,i是虛數(shù)單位)是純虛數(shù),則復(fù)數(shù)3-z的共軛復(fù)數(shù)是(  )
A.3+iB.3-iC.3+2iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列函數(shù)中,與函數(shù)y=x表示同一函數(shù)的是( 。
A.$f(x)=\sqrt{x^2}$B.$f(x)=\root{5}{x^5}$C.$f(x)={(\sqrt{x})^2}$D.f(x)=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)集合A={x|1≤x<4},B={x|2a≤x<3-a}.若A∪B=A,則實(shí)數(shù)a的取值范圍$a≥\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知點(diǎn)A(-1,0),F(xiàn)(1,0),動(dòng)點(diǎn)P滿足$\overrightarrow{AP}$•$\overrightarrow{AF}$=2|$\overrightarrow{FP}$|.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)直線l過(guò)F交曲線C于A、B兩點(diǎn),若線段AB的長(zhǎng)為6,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.sin(-765°)的值是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列,且${a_3}=\frac{1}{8},{a_2}=4{a_7}$
(1)求{an}的通項(xiàng)公式
(2)若${b_n}={a_n}{a_{n+1}}({n∈{N^+}})$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.給出下列命題:
①若給定命題p:?x∈R,使得x2+x-1<0,則?p:?x∈R,均有x2+x-1≥0;
②若p∧q為假命題,則p,q均為假命題;
③命題“若x2-3x+2=0,則x=2”的否命題為“若 x2-3x+2=0,則x≠2,
其中正確的命題序號(hào)是( 。
A.B.①②C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知0<α<$\frac{π}{2}$,sinα=$\frac{1}{3}$,則cosα=$\frac{2\sqrt{2}}{3}$;cos2α=$\frac{7}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案