分析 (1)利用等差數(shù)列的通項公式即可得出;
(2)利用“裂項求和”即可得出.
解答 解:(1)由于$\{\frac{1}{a_n}\}$為等差數(shù)列,若設(shè)其公差為d,則$\frac{1}{a_3}=8,\frac{1}{a_2}=\frac{1}{4}•\frac{1}{a_7}$,
∴$\frac{1}{a_1}+2d=8$,$\frac{1}{a_1}+d=\frac{1}{4}(\frac{1}{a_1}+6d)$,
解得$\frac{1}{a_1}=2,d=3$,
于是$\frac{1}{{a}_{n}}$=2+3(n-1),整理得an=$\frac{1}{3n-1}$.
(2)由(1)得bn=anan+1=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$,
∴${S_n}=\frac{1}{3}(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+…+\frac{1}{3n-1}-\frac{1}{3n+2})=\frac{n}{2(3n+2)}$.
點評 本題考查了等差數(shù)列的通項公式、“裂項求和”,考查了變形能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{7}{4}$,+∞) | B. | (一∞,$\frac{7}{4}$) | C. | (0,$\frac{7}{4}$) | D. | ($\frac{7}{4}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,4-a] | B. | (0,4-a] | C. | [4-a,+∞) | D. | (-a,4-a] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com