【題目】已知函數(shù)

)求函數(shù)的極值點.

)設函數(shù),其中,求函數(shù)上的最小值.

【答案】(1)是函數(shù)的極小值點,極大值點不存在.(2)見解析

【解析】分析:(1)先求導數(shù),再求導函數(shù)零點,列表分析導函數(shù)符號變化規(guī)律,確定極值點,(2)先作差函數(shù),求導得再根據(jù)零點 與區(qū)間 關系分類討論 ,結合單調(diào)性確定函數(shù)最小值取法.

詳解:解:()函數(shù)的定義域為,,

∴令,得,令,得,

∴函數(shù)單調(diào)遞減,在單調(diào)遞增,

是函數(shù)的極小值點,極大值點不存在.

)由題意得,

,

①當時,即時,上單調(diào)遞增,

上的最小值為;

②當,即時,上單調(diào)遞減,在上單調(diào)遞增,

上的最小值為;

③當,即時,在區(qū)間上單調(diào)遞減,

上的最小值為

綜上所述,當時,的最小值為;

時,的最小值為;

時,的最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體, 兩兩垂直, ,

.

() 若點在線段,求證: 平面;

()求直線與平面所成的角的正弦值;

()求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正△ABC內(nèi)接于半徑為2的圓O,點P是圓O上的一個動點,則 的取值范圍是(
A.[0,6]
B.[﹣2,6]
C.[0,2]
D.[﹣2,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點,,,分別為橢圓: 的左、右頂點,下頂點和右焦點,直線過點,與橢圓交于點,已知當直線軸時,.

(1)求橢圓的離心率;

(2)若當點重合時,點到橢圓的右準線的距離為上.

①求橢圓的方程;

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海關對同時從三個不同地區(qū)進口的某種商品進行抽樣檢測,從各地區(qū)進口此種商品的數(shù)量(單位:件)如下表所示,工作人員用分層抽樣的方法從這些商品中共抽取6件進行檢測.

地區(qū)




數(shù)量

50

150

100

1)求這6件樣品中來自各地區(qū)商品的數(shù)量;

2)若在這6件樣品中隨機抽取2件送往甲機構進一步檢測,求這2件商品來自相同地區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解今年某校高三畢業(yè)班準備報考飛行員學生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(Ⅰ)求該校報考飛行員的總?cè)藬?shù);
(Ⅱ)以這所學校的樣本數(shù)據(jù)來估計全省的總體數(shù)據(jù),若從全省報考飛行員的同學中(人數(shù)很多)任選三人,設X表示體重超過60公斤的學生人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)當a=2時,試求函數(shù)圖線過點(1,f(1))的切線方程;
(Ⅱ)當a=1時,若關于x的方程f(x)=x+b有唯一實數(shù)解,試求實數(shù)b的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個極值點x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“ALS冰桶挑戰(zhàn)賽是一項社交網(wǎng)絡上發(fā)起的籌款活動,活動規(guī)定:被邀請者要么在24小時內(nèi)接受挑戰(zhàn),要么選擇為慈善機構捐款(不接受挑戰(zhàn)),并且不能重復參加該活動.若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外3個人參與這項活動.假設每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.

1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個人接受挑戰(zhàn)的概率是多少?

2)為了解冰桶挑戰(zhàn)賽與受邀請的性別是否有關,某調(diào)查機構進行了隨機抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:


接受挑戰(zhàn)

不接受挑戰(zhàn)

合計

男性

45

15

60

女性

25

15

40

合計

70

30

100

根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過0.1的前提下認為冰桶挑戰(zhàn)賽與受邀請者的性別有關

附:


0.100

0.050

0.010

0.001


2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的方程為,過點的直線與圓交于兩點,

1)若,求直線的方程;

2)若直線軸交于點,設,,R,求的值.

查看答案和解析>>

同步練習冊答案