【題目】已知等比數(shù)列{an}滿(mǎn)足:a1= ,a1 , a2 , a3﹣ 成等差數(shù)列,公比q∈(0,1)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2nan , 求數(shù)列{bn}的前n項(xiàng)和Sn .
【答案】
(1)解:設(shè)等比數(shù)列{an}公比為q,
∵ , 成等差數(shù)列,
∴ ,即 ,
整理得4q2﹣8q+3=0,
解得 或 .
又∵q∈(0,1),
∴ ,
∴
(2)解:根據(jù)題意得bn=2nan= , ,①
,②
②﹣①得:
=
=
=
【解析】(1)利用a1 , a2 , a3﹣ 成等差數(shù)列.建立等量關(guān)系式,求出通項(xiàng)公式.;(2)寫(xiě)出數(shù)列{bn}的通項(xiàng)公式,然后寫(xiě)出前n項(xiàng)和的表達(dá)式通過(guò)錯(cuò)位相減法求解即可.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取50名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿(mǎn)分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.
(1)若該校高一年級(jí)共有學(xué)生1000人,試估計(jì)成績(jī)不低于60分的人數(shù);
(2)為了幫助學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定在隨機(jī)抽取的50名學(xué)生中成立“二幫一”小組,即從成績(jī)[90,100]中選兩位同學(xué),共同幫助[40,50)中的某一位同學(xué).已知甲同學(xué)的成績(jī)?yōu)?2分,乙同學(xué)的成績(jī)?yōu)?5分,求甲、乙恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)。
(1)若f(x)的圖象與g(x)的圖象所在兩條曲線(xiàn)的一個(gè)公共點(diǎn)在y軸上,且在該點(diǎn)處兩條曲線(xiàn)的切線(xiàn)互相垂直,求b和c的值。
(2)若a=c=1,b=0,試比較f(x)與g(x)的大小,并說(shuō)明理由;
(3)若b=c=0,證明:對(duì)任意給定的正數(shù)a,總存在正數(shù)m,使得當(dāng)x時(shí),
恒有f(x)>g(x)成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】秦九韶算法是中國(guó)南宋時(shí)期的數(shù)學(xué)家秦九韶提出的一種多項(xiàng)式簡(jiǎn)化算法,對(duì)于求一個(gè)n次多項(xiàng)式函數(shù)fn(x)=anxn+an﹣1xn﹣1+…+a1x+a0的具體函數(shù)值,運(yùn)用常規(guī)方法計(jì)算出結(jié)果最多需要n次加法和 乘法,而運(yùn)用秦九韶算法由內(nèi)而外逐層計(jì)算一次多項(xiàng)式的值的算法至多需要n次加法和n次乘法.對(duì)于計(jì)算機(jī)來(lái)說(shuō),做一次乘法運(yùn)算所用的時(shí)間比做一次加法運(yùn)算要長(zhǎng)得多,所以此算法極大地縮短了CPU運(yùn)算時(shí)間,因此即使在今天該算法仍具有重要意義.運(yùn)用秦九韶算法計(jì)算f(x)=0.5x6+4x5﹣x4+3x3﹣5x當(dāng)x=3時(shí)的值時(shí),最先計(jì)算的是( )
A.﹣5×3=﹣15
B.0.5×3+4=5.5
C.3×33﹣5×3=66
D.0.5×36+4×35=1336.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)F的直線(xiàn)交該拋物線(xiàn)于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,則△AOB的面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知☉O1與☉O2相交于A,B兩點(diǎn),過(guò)點(diǎn)A作☉O1的切線(xiàn)交☉O2于點(diǎn)C,過(guò)點(diǎn)B作兩圓的割線(xiàn),分別交☉O1、☉O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.若AD是☉O2的切線(xiàn),且PA=6,PC=2,BD=9,則AB的長(zhǎng)為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;
(Ⅱ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線(xiàn)方程為:,當(dāng)時(shí),若在內(nèi)恒成立,則稱(chēng)為函數(shù)的“轉(zhuǎn)點(diǎn)”.當(dāng)時(shí),試問(wèn)函數(shù)是否存在“轉(zhuǎn)點(diǎn)”?若存在,求出轉(zhuǎn)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出50個(gè)數(shù),1,2,4,7,11,…,其規(guī)律是:第1個(gè)數(shù)是1,第2個(gè)數(shù)比第1個(gè)數(shù)大1,第3個(gè)數(shù)比第2個(gè)數(shù)大2,第4個(gè)數(shù)比第3個(gè)數(shù)大3,…,以此類(lèi)推.要求計(jì)算這50個(gè)數(shù)的和.將右邊給出的程序框圖補(bǔ)充完整,
(1)___________________ (2)_______________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)為2的線(xiàn)段AB中點(diǎn)為C,當(dāng)線(xiàn)段AB的兩個(gè)端點(diǎn)A和B分別在x軸和y軸上運(yùn)動(dòng)時(shí),C點(diǎn)的軌跡為曲線(xiàn)C1;
(1)求曲線(xiàn)C1的方程;
(2)直線(xiàn) ax+by=1與曲線(xiàn)C1相交于C、D兩點(diǎn)(a,b是實(shí)數(shù)),且△COD是直角三角形(O是坐標(biāo)原點(diǎn)),求點(diǎn)P(a,b)與點(diǎn)(0,1)之間距離的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com