設(shè)函數(shù)f(x)=3ax2+2bx+c,且有a+b+c=0,f(0)>0,f(1)>0.
(Ⅰ)求證:a>0,且-2<
b
a
<-1;
(Ⅱ)求證:函數(shù)y=f(x)在區(qū)間(0,1)內(nèi)有兩個(gè)不同的零點(diǎn).
考點(diǎn):二次函數(shù)的性質(zhì),函數(shù)零點(diǎn)的判定定理
專題:概率與統(tǒng)計(jì)
分析:(I)由a+b+c=0,f(0)>0,f(1)>0,消去b,得a>c>0,消去c,得a+b<0,2a+b>0,即-2a<b<-a,進(jìn)而可得a>0,且-2<
b
a
<-1;
(Ⅱ)拋物線f(x)=3ax2+2bx+c的頂點(diǎn)為(-
b
3a
,
3ac-b2
3a
)
,結(jié)合(1)中結(jié)論,可得-
b
3a
∈(0,1)
且f(0)>0,f(1)>0,f(-
b
3a
)=-
a2+c2-ac
3a
<0
,且圖象連續(xù)不斷,由函數(shù)零點(diǎn)存在定理可得結(jié)論.
解答: 證明:(Ⅰ)∵函數(shù)f(x)=3ax2+2bx+c,f(0)>0,f(1)>0,
∴c>0,3a+2b+c>0,…(2分)
由條件a+b+c=0,消去b,得a>c>0;
由條件a+b+c=0,消去c,得a+b<0,2a+b>0,即-2a<b<-a,…(5分)
-2<
b
a
<-1
;                                                  …(6分)
(Ⅱ)拋物線f(x)=3ax2+2bx+c的頂點(diǎn)為(-
b
3a
,
3ac-b2
3a
)
,
-2<
b
a
<-1
,得
1
3
<-
b
3a
2
3
,即有-
b
3a
∈(0,1)
,…(8分)
又∵f(0)>0,f(1)>0,f(-
b
3a
)=-
a2+c2-ac
3a
<0
,且圖象連續(xù)不斷,
∴函數(shù)y=f(x)在區(qū)間(0,-
b
3a
)
(-
b
3a
,1)
內(nèi)分別有一個(gè)零點(diǎn),
故函數(shù)y=f(x)在(0,1)內(nèi)有兩個(gè)不同的零點(diǎn).…(12分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)零點(diǎn)的判定定理,二次函數(shù)的圖象和性質(zhì),綜合性強(qiáng),運(yùn)算強(qiáng)度大,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一袋中裝有6個(gè)白球,3個(gè)紅球,現(xiàn)從袋中往外取球,每次取出一個(gè),取出后記下球的顏色,然后放回,直到紅球出現(xiàn)9次停止.設(shè)停止時(shí),取球次數(shù)為隨機(jī)變量X,則P(X=11)的值為( 。
A、C
 
9
11
1
3
8•(
2
3
3
B、C
 
8
10
1
3
8•(
2
3
2
C、C
 
8
10
1
3
9•(
2
3
2
D、(
1
3
8•(
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將直線3x-4y+λ=0沿x軸向左平移1個(gè)單位,所得直線與圓x2+y2-2x-4y+4=0相切,則實(shí)數(shù)λ的值為(  )
A、-3或7B、-2或8
C、0或10D、1或11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中裝有20個(gè)不同的小球,其中有n(n∈N*,n>1)個(gè)紅球,4個(gè)藍(lán)球,10個(gè)黃球,其余為白球,已知從袋中取出2個(gè)顏色相同的彩球(不是白球)的概率為
26
95

(1)求袋中的紅球、白球各有多少個(gè)?
(2)從袋中任取2個(gè)球,求其中一定有紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如圖)
分 組 頻率
頻率
組距
[1000,1500)  
 
 
 
[1500,2000)  
 
0.0004
[2000,2500)  
 
 
 
[2500,3000)  
 
0.0005
[3000,3500)  
 
 
 
[3500,4000]  
 
0.0001
合 計(jì)  
 
 
 
(1)根據(jù)頻率分布直方圖完成以上表格;
(2)用組中值估計(jì)這10 000人月收入的平均值;
(3)為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,則在[2000,3500)(元)月收入段應(yīng)抽出多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為矩形,BC⊥平面ABE.平面BCE⊥平面ACE,AE=EB=BC=2
(Ⅰ)求證:AE⊥BE;
(Ⅱ)求二面角A-CD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x-ln|x|.
(1)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由;
(2)請(qǐng)用描點(diǎn)法畫出函數(shù)f(x)的大致圖象;
(2)設(shè)實(shí)常數(shù)a,b滿足ab>0,試求f(x)在閉區(qū)間[a,b]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c為實(shí)數(shù),函數(shù)f(x)=x3-ax2-bx+c為R上的奇函數(shù),且在區(qū)間[1,+∞)上單調(diào).
(1)求a,b,c應(yīng)滿足的條件;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)設(shè)x0≥1,f(x0)≥1,且f[f(x0)]=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:f(x)=ax2+(b-8)x-a-ab,當(dāng)x∈(-3,2)時(shí),f(x)>0,x∈(-∞,-3)∪(2,+∞)時(shí),
f(x)<0.
(1)求y=f(x)的解析式
(2)解x的不等式ax2+bx+c≤0.

查看答案和解析>>

同步練習(xí)冊(cè)答案