【題目】圖,從甲地到丙地要經(jīng)過兩個十字路口(十字路口與十字路口),從乙地到丙地也要經(jīng)過兩個十字路口(十字路口與十字路口),設(shè)各路口信號燈工作相互獨立,且在,,,路口遇到紅燈的概率分別為,,,.
(1)求一輛車從乙地到丙地至少遇到一個紅燈的概率;
(2)若小方駕駛一輛車從甲地出發(fā),小張駕駛一輛車從乙地出發(fā),他們相約在丙地見面,記表示這兩人見面之前車輛行駛路上遇到的紅燈的總個數(shù),求的分布列及數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),圓C的參數(shù)方程為 (θ為常數(shù)).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有______
①平均數(shù)不受少數(shù)幾個極端值的影響,中位數(shù)受樣本中的每一個數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計總體分布的過程中,樣本容量越大,估計越準(zhǔn)確.
④向一個圓面內(nèi)隨機地投一個點,如果該點落在圓內(nèi)任意一點都是等可能的,則該隨機試驗的數(shù)學(xué)模型是古典概型.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在x軸正半軸上,半徑為5,且與直線相切.
(1)求圓C的方程;
(2)設(shè)點,過點作直線與圓C交于兩點,若,求直線的方程;
(3)設(shè)P是直線上的點,過P點作圓C的切線,切點為求證:經(jīng)過 三點的圓必過定點,并求出所有定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個不相等的非零向量 , ,兩組向量 , , , , 和 , , , , 均由2個 和3個 排列而成,記S= + + + + ,Smin表示S所有可能取值中的最小值.則下列命題正確的是(寫出所有正確命題的編號).
①S有5個不同的值;
②若 ⊥ ,則Smin與| |無關(guān);
③若 ∥ ,則Smin與| |無關(guān);
④若| |>4| |,則Smin>0;
⑤若| |=2| |,Smin=8| |2 , 則 與 的夾角為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的課外閱讀時間情況,某學(xué)校隨機抽取了50人進行統(tǒng)計分析,把這50人每天閱讀的時間(單位:分鐘)繪制成頻數(shù)分布表,如下表所示:
閱讀時間 | ||||||
人數(shù) | 8 | 10 | 12 | 11 | 7 | 2 |
若把每天閱讀時間在60分鐘以上(含60分鐘)的同學(xué)稱為“閱讀達(dá)人”,根據(jù)統(tǒng)計結(jié)果中男女生閱讀達(dá)人的數(shù)據(jù),制作成如圖所示的等高條形圖.
(1)根據(jù)抽樣結(jié)果估計該校學(xué)生的每天平均閱讀時間(同一組數(shù)據(jù)用該區(qū)間的終點值作為代表);
(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為“閱讀達(dá)人”跟性別有關(guān)?
男生 | 女生 | 總計 | |
閱讀達(dá)人 | |||
非閱讀達(dá)人 | |||
總計 |
附:參考公式,其中.
臨界值表:
() | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查觀眾對電視劇《風(fēng)箏》的喜愛程度,某電視臺舉辦了一次現(xiàn)場調(diào)查活動.在參加此活動的甲、乙兩地大量觀眾中,各隨機抽取了8名觀眾對該電視劇評分做調(diào)查(滿分100分),被抽取的觀眾的評分結(jié)果如圖所示.
(1)從甲地抽取的8名觀眾和乙地抽取的8名觀眾中分別各選取一人,在已知兩人中至少一人評分不低于90分的條件下,求乙地被選取的觀眾評分低于90分的概率。
(2)從甲地抽取出來的8名觀眾中選取1人,從乙地抽取出來的8名觀眾中選取2人去參加代表大會,記選取的3人中評分不低于90分的人數(shù)為,求的分布列與期望。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com