【題目】已知函數(shù).

(1)當時,求函數(shù)的極值;

(2)若方程上有兩個不等實根,求的取值范圍.

【答案】(1)的極小值為,無極大值.

(2).

【解析】分析:1)求導函數(shù) ,,求得極值點為然后通過函數(shù)的單調性求得極值。

2)分類討論的不同取值情況。在不同取值時,討論極值點、單調性和最值從而判斷滿足存在兩個零點的條件。

詳解:(1)

因為

所以,

,得,

時,,單調遞減,

時,,單調遞增,

所以的極小值為,無極大值.

(2)方程上有兩個不等實根,即函數(shù)上有兩個零點,

①當時,由(1)可知,單調遞減,在單調遞增,

又因為,不合題意,舍去,

②當時,時,

時,

單調遞增區(qū)間為,單調遞減區(qū)間為

要使函數(shù)上有兩個零點,必須,

所以單調遞減,在單調遞增,

所以,得

又因為,

所以

時,單調遞增,不合題意;

④當時,時,,

時,,

單調遞增區(qū)間為,單調遞減區(qū)間為,

因為,要使函數(shù)上有兩個零點,

,

綜上所述,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知的展開式中的第二項和第三項的系數(shù)相等.

(1)求的值;

(2)求展開式中所有二項式系數(shù)的和;

(3)求展開式中所有的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖,從甲地到丙地要經(jīng)過兩個十字路口(十字路口與十字路口),從乙地到丙地也要經(jīng)過兩個十字路口(十字路口與十字路口),設各路口信號燈工作相互獨立,且在,,,路口遇到紅燈的概率分別為,.

(1)求一輛車從乙地到丙地至少遇到一個紅燈的概率;

(2)若小方駕駛一輛車從甲地出發(fā),小張駕駛一輛車從乙地出發(fā),他們相約在丙地見面,記表示這兩人見面之前車輛行駛路上遇到的紅燈的總個數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=1+(1+a)x﹣x2﹣x3 , 其中a>0.
(1)討論f(x)在其定義域上的單調性;
(2)當x∈[0,1]時,求f(x)取得最大值和最小值時的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設實數(shù)c>0,整數(shù)p>1,n∈N*
(1)證明:當x>﹣1且x≠0時,(1+x)p>1+px;
(2)數(shù)列{an}滿足a1 ,an+1= an+ an1p . 證明:an>an+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角的三條對邊分別為.

(1)求;

(2)點在邊上,,,,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=a(x﹣5)2+6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了增強消防安全意識,某中學做了一次消防知識講座,從男生中隨機抽取了50人,從女生中隨機抽取了70人參加消防知識測試,統(tǒng)計數(shù)據(jù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

男生

15

35

50

女生

30

40

70

總計

45

75

120

(1)試判斷能否有90%的把握認為消防知識的測試成績優(yōu)秀與否與性別有關;

(2)為了宣傳消防安全知識,從該校測試成績獲得優(yōu)秀的同學中采用分層抽樣的方法,隨機選出6名組成宣傳小組.現(xiàn)從這6人中隨機抽取2名到校外宣傳,求到校外宣傳的同學中至少有1名是男生的概率。

附:

P(K2k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間 上的最大值和最小值.

查看答案和解析>>

同步練習冊答案