橢圓b2x2+a2y2=a2b2(a>b>0)的兩個焦點分別是F1、F2,等邊三角形的邊AF1、AF2與該橢圓分別相交于B、C兩點,且2|BC|=|F1F2|,則該橢圓的離心率等于


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:由△A為正三角形可得∠AF1F2=∠A=60°,則可求直線AF1,AF2的斜率,進而可求所在的直線方程,其交點,而AF1中點B在橢圓上,代入橢圓的方程,結(jié)合b2=a2-c2及0<e<1可求該橢圓的離心率.
解答:解:由△AF1F2為正三角形可得∠AF1F2=∠AF2F1=60°
則直線AF1,AF2的斜率分別為 ,-
則直線AF1,AF2所在的直線方程分別為y=,y=
其交點A(0,c),由于2|BC|=|F1F2|,得BC是三角形的中位線,得B是AF1的中點,
從而AF1中點B( ,)在橢圓上,代入橢圓的方程可得
整理可得,c2(a2-c2)+3c2a2=4a2(a2-c2
∴4a4-8a2c2+c4=0
兩邊同時除以a4可得,e4-8e2+4=0
∵0<e<1
(舍)

故選C.
點評:本題考查橢圓的簡單性質(zhì),直角三角形中的邊角關(guān)系的應用,考查計算能力和數(shù)形結(jié)合思想.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

[文]已知圓(x-2)2+(y-1)2=
20
3
,橢圓b2x2+a2y2=a2b2(a>b>0)的離心率為
2
2
,若圓與橢圓相交于A、B,且線段AB是圓的直徑,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓b2x2+a2y2=a2b2(a>b>0)與圓x2+y2=4c2只有兩個公共點,其中c是該橢圓的半焦距,橢圓上的點到直線x-y-c=0距離的最大值為2
2

(1)求橢圓的離心率;
(2)若a>2c時,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•沅江市模擬)橢圓b2x2+a2y2=a2b2(a>b>0)的兩個焦點分別是F1、F2,等邊三角形的邊AF1、AF2與該橢圓分別相交于B、C兩點,且2|BC|=|F1F2|,則該橢圓的離心率等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若橢圓b2x2+a2y2=a2b2(a>b>0)的左焦點為F,右頂點為A,上頂點為B,且離心率為,求∠ABF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若橢圓b2x2+a2y2=a2b2(a>b>0)的左焦點為F,右頂點為A,上頂點為B,且離心率為,求∠ABF.

查看答案和解析>>

同步練習冊答案