【題目】已知 函數(shù) 在區(qū)間 上有1個零點; 函數(shù) 圖象與 軸交于不同的兩點.若“ ”是假命題,“ ”是真命題,求實數(shù) 的取值范圍.

【答案】解:對于 .
該二次函數(shù)圖象開向上,對稱軸為直線
所以 ,所以
對于 函數(shù) 軸交于不同的兩點,
所以 ,即
解得 .
因為“ ”是假命題,“ ”是真命題,所以 一真一假.
①當 假時,有 ,所以 ;
②當 真時,有 ,所以 .
故答案為:實數(shù) 的取值范圍是 .
【解析】對于命題p,二次函數(shù)的對稱軸正好在區(qū)間的左端點處,則函數(shù)在區(qū)間中是增函數(shù),要使函數(shù)有一個零點,則端點處函數(shù)值左負右正,求出a的范圍;對于命題q,二次函數(shù)與x軸有兩個交點,則判別式大于0,求出a的范圍。由“ p ∧ q ”是假命題,“ p ∨ q ”是真命題,則p和q一真一假,分成p真q假和p假q真求出a的范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知MOD函數(shù)是一個求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個算法的程序框圖,若輸入m的值為48時,則輸出i的值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,若函數(shù) 在x=1處與直線 相切.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)求函數(shù) 上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次數(shù)學考試后,某老師從甲,乙兩個班級中各抽取5人,記錄他們的考試成績,得到如圖所示的莖葉圖,已知甲班5名同學成績的平均數(shù)為81,乙班5名同學成績的中位數(shù)為73,則 的值為( )

A.2
B.-2
C.3
D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知頂點在單位圓上的 中,角 的對邊分別為 ,且 .
(1)求 的值;
(2)若 ,求 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐 中,底面 為矩形, 的中點, 的中點, 中點.

(1)證明: 平面 ;
(2)若平面 底面 , ,試在 上找一點 ,使 平面 ,并證明此結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當促銷費用為x萬元時,銷售量t萬件滿足t=5- (其中0 x a,a為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需投入成本(10+2t)萬元(不含促銷費用),產(chǎn)品的銷售價格定為5+ 萬元/萬件.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,則“ ”是“ ”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案