【題目】已知f(x)是定義在[﹣1,1]上的奇函數,且f(1)=1,若m,n∈[﹣1,1],m+n≠0 時,有 .
(1)求證:f(x)在[﹣1,1]上為增函數;
(2)求不等式 的解集;
(3)若 對所有 恒成立,求實數t的取值范圍.
【答案】
(1)解:證明:任取x1,x2∈[﹣1,1]且x1<x2,則 ,
∴f(x2)>f(x1),∴f(x)為增函數
(2)解: ,等價于 ,求得0≤x< ,
即不等式 的解集為
(3)解:由于f(x)為增函數,
∴f(x)的最大值為 對 恒成立 對 的恒成立,
設 ,則 .
又 = =1+tan2α+2tanα+2=(tanα+1)2+2,
∵α∈[﹣ , ],∴tanα∈[﹣ ,1],故當tanα=1時,
∴t2+t≥6,求得t≤﹣3 t≥2,即為所求的實數t的取值范圍.
【解析】(1)由條件利用增函數的定義證得結論.(2)根據函數的奇偶性和單調性,把要解的不等式等價轉化為一個不等式組,求得此不等式的解集即可.(3)根據函數的單調性求得f(x)的最大值,可得t2+t≥g(α)= +2tanα+2 對 的恒成立,再求得g(α)的最大值,從而求得t的范圍.
【考點精析】認真審題,首先需要了解函數的最值及其幾何意義(利用二次函數的性質(配方法)求函數的最大(小)值;利用圖象求函數的最大(。┲;利用函數單調性的判斷函數的最大(小)值),還要掌握函數奇偶性的性質(在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】已知f(x)=ax﹣lnx,x∈(0,e],其中e是自然常數,a∈R.
(1)當a=1時,求f(x)的單調區(qū)間和極值;
(2)是否存在實數a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
(3)證明:(1﹣ )( )( ﹣ )…( ﹣ )<e3(3﹣n) .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解學生寒假期間學習情況,學校對某班男、女學生學習時間進行調查,學習時間按整小時統(tǒng)計,調查結果繪成折線圖如下:
(I)已知該校有名學生,試估計全校學生中,每天學習不足小時的人數.
(II)若從學習時間不少于小時的學生中選取人,設選到的男生人數為,求隨機變量的分布列.
(III)試比較男生學習時間的方差與女生學習時間方差的大。ㄖ恍鑼懗鼋Y論).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,兩圓內切于點T,大圓的弦AB切小圓于點C.TA,TB與小圓分別相交于點E,F.FE的延長線交兩圓的公切線TP于點P.
求證:(1) =;
(2)AC·PF=BC·PT.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)求函數f(x)的最小正周期和圖象的對稱軸方程.
(2)求函數f(x)的單調增區(qū)間.
(3)求函數y=f(x)在區(qū)間 上的最小值,并求使y=f(x)取得最小值時的x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設, 是橢圓上的兩點,橢圓的離心率為,短軸長為2,已知向量, ,且, 為坐標原點.
(1)若直線過橢圓的焦點,( 為半焦距),求直線的斜率的值;
(2)試問: 的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且當x>1時,f(x)>0.
(1)判斷函數f(x)在其定義域(0,+∞)上的單調性并證明;
(2)解不等式f(x)+f(x﹣2)≤3.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com